On uniqueness properties of solutions of the Zakharov–Kuznetsov equation
Autor: | Jorge Mejía, Eddye Bustamante, Pedro Isaza |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Journal of Functional Analysis. 264:2529-2549 |
ISSN: | 0022-1236 |
DOI: | 10.1016/j.jfa.2013.03.003 |
Popis: | We prove that if the difference of two sufficiently smooth solutions of the Zakharov–Kuznetsov equation ∂ t u + ∂ x 3 u + ∂ x ∂ y 2 u + u ∂ x u = 0 , ( x , y ) ∈ R 2 , t ∈ [ 0 , 1 ] , decays as e − a ( x 2 + y 2 ) 3 / 4 at two different times, for some a > 0 large enough, then both solutions coincide. |
Databáze: | OpenAIRE |
Externí odkaz: |