On uniqueness properties of solutions of the Zakharov–Kuznetsov equation

Autor: Jorge Mejía, Eddye Bustamante, Pedro Isaza
Rok vydání: 2013
Předmět:
Zdroj: Journal of Functional Analysis. 264:2529-2549
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2013.03.003
Popis: We prove that if the difference of two sufficiently smooth solutions of the Zakharov–Kuznetsov equation ∂ t u + ∂ x 3 u + ∂ x ∂ y 2 u + u ∂ x u = 0 , ( x , y ) ∈ R 2 , t ∈ [ 0 , 1 ] , decays as e − a ( x 2 + y 2 ) 3 / 4 at two different times, for some a > 0 large enough, then both solutions coincide.
Databáze: OpenAIRE