Global Existence Result for the Generalized Peterlin Viscoelastic Model

Autor: Mária Lukáčová-Medviďová, Hana Mizerová, Šárka Nečasová, Michael Renardy
Rok vydání: 2017
Předmět:
Zdroj: SIAM Journal on Mathematical Analysis. 49:2950-2964
ISSN: 1095-7154
0036-1410
DOI: 10.1137/16m1068505
Popis: We consider a class of differential models of viscoelastic fluids with diffusive stress. These constitutive models are motivated by Peterlin dumbbell theories with a nonlinear spring law for an infinitely extensible spring. A diffusion term is included in the constitutive model. Under appropriate assumptions on the nonlinear constitutive functions, we prove global existence of weak solutions for large data. For creeping flows and two-dimensional flows, we prove the global existence of a classical solution under stronger assumptions.
Databáze: OpenAIRE