Global Existence Result for the Generalized Peterlin Viscoelastic Model
Autor: | Mária Lukáčová-Medviďová, Hana Mizerová, Šárka Nečasová, Michael Renardy |
---|---|
Rok vydání: | 2017 |
Předmět: |
Class (set theory)
Applied Mathematics 010102 general mathematics Mathematical analysis Constitutive equation 01 natural sciences Viscoelasticity 010101 applied mathematics Computational Mathematics Nonlinear system Spring (device) Dumbbell 0101 mathematics Diffusion (business) Differential (infinitesimal) Analysis Mathematics |
Zdroj: | SIAM Journal on Mathematical Analysis. 49:2950-2964 |
ISSN: | 1095-7154 0036-1410 |
DOI: | 10.1137/16m1068505 |
Popis: | We consider a class of differential models of viscoelastic fluids with diffusive stress. These constitutive models are motivated by Peterlin dumbbell theories with a nonlinear spring law for an infinitely extensible spring. A diffusion term is included in the constitutive model. Under appropriate assumptions on the nonlinear constitutive functions, we prove global existence of weak solutions for large data. For creeping flows and two-dimensional flows, we prove the global existence of a classical solution under stronger assumptions. |
Databáze: | OpenAIRE |
Externí odkaz: |