Asymptotic Behavior of the Mean Number of Particles for a Branching Random Walk on the Lattice Zd with Periodic Sources of Branching

Autor: M. V. Platonova, K. S. Ryadovkin
Rok vydání: 2020
Předmět:
Zdroj: Journal of Mathematical Sciences. 244:858-873
ISSN: 1573-8795
1072-3374
DOI: 10.1007/s10958-020-04658-8
Popis: We consider a continuous-time branching random walk on ℤ d with birth and death of particles at a periodic set of points (sources of branching). Spectral properties of the evolution operator of the mean number of particles are studied. We derive a representation of the mean value of particle number in a form of asymptotic series.
Databáze: OpenAIRE