Asymptotic Behavior of the Mean Number of Particles for a Branching Random Walk on the Lattice Zd with Periodic Sources of Branching
Autor: | M. V. Platonova, K. S. Ryadovkin |
---|---|
Rok vydání: | 2020 |
Předmět: |
Statistics and Probability
Particle number Applied Mathematics General Mathematics 010102 general mathematics Mean value Spectral properties 01 natural sciences Birth–death process 010305 fluids & plasmas Branching random walk Lattice (order) 0103 physical sciences Statistical physics 0101 mathematics Asymptotic expansion Mathematics |
Zdroj: | Journal of Mathematical Sciences. 244:858-873 |
ISSN: | 1573-8795 1072-3374 |
DOI: | 10.1007/s10958-020-04658-8 |
Popis: | We consider a continuous-time branching random walk on ℤ d with birth and death of particles at a periodic set of points (sources of branching). Spectral properties of the evolution operator of the mean number of particles are studied. We derive a representation of the mean value of particle number in a form of asymptotic series. |
Databáze: | OpenAIRE |
Externí odkaz: |
načítá se...