Autor: |
Alfian, Ganjar1 (AUTHOR), Octava, Muhammad Qois Huzyan1 (AUTHOR), Hilmy, Farhan Mufti1 (AUTHOR), Nurhaliza, Rachma Aurya1 (AUTHOR), Saputra, Yuris Mulya1 (AUTHOR), Putri, Divi Galih Prasetyo1 (AUTHOR), Syahrian, Firma1 (AUTHOR), Fitriyani, Norma Latif2 (AUTHOR), Atmaji, Fransiskus Tatas Dwi3 (AUTHOR), Farooq, Umar4 (AUTHOR), Nguyen, Dat Tien5 (AUTHOR), Syafrudin, Muhammad6 (AUTHOR) udin@sejong.ac.kr |
Předmět: |
|
Zdroj: |
Information (2078-2489). Oct2023, Vol. 14 Issue 10, p551. 20p. |
Abstrakt: |
Analyzing customer shopping habits in physical stores is crucial for enhancing the retailer–customer relationship and increasing business revenue. However, it can be challenging to gather data on customer browsing activities in physical stores as compared to online stores. This study suggests using RFID technology on store shelves and machine learning models to analyze customer browsing activity in retail stores. The study uses RFID tags to track product movement and collects data on customer behavior using receive signal strength (RSS) of the tags. The time-domain features were then extracted from RSS data and machine learning models were utilized to classify different customer shopping activities. We proposed integration of iForest Outlier Detection, ADASYN data balancing and Multilayer Perceptron (MLP). The results indicate that the proposed model performed better than other supervised learning models, with improvements of up to 97.778% in accuracy, 98.008% in precision, 98.333% in specificity, 98.333% in recall, and 97.750% in the f1-score. Finally, we showcased the integration of this trained model into a web-based application. This result can assist managers in understanding customer preferences and aid in product placement, promotions, and customer recommendations. [ABSTRACT FROM AUTHOR] |
Databáze: |
Library, Information Science & Technology Abstracts |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|