Autor: |
Naskari, Vasiliki1 (AUTHOR) greg@uoi.gr, Doumenis, Gregory1 (AUTHOR), Masklavanos, Ioannis1 (AUTHOR) |
Předmět: |
|
Zdroj: |
Information (2078-2489). Jun2023, Vol. 14 Issue 6, p316. 21p. |
Abstrakt: |
Photovoltaic (PV) cells are a technology of choice for providing power to self-sufficient Internet of Things (IoT) devices. These devices' declining power demands can now be met even in indoor environments with low light intensity. Correspondingly, light simulation systems need to cover a wide spectrum of irradiance intensity to emulate a PV cell's working conditions while meeting cost targets. In this paper, we propose a method for calculating the irradiance distribution for a given number and position of LED sources to meet irradiance and uniformity requirements in LED-based light simulators. In addition, we establish design guidelines for minimizing non-uniformity under specific constraints and utilize a function to evaluate the degree of non-uniformity and determine the optimal distance from the illuminated surface. We demonstrate that even with a small number of low-cost LED sources, high levels of irradiance can be achieved with bounded non-uniformities. The presented guidelines serve as a resource for designing tailored, low-cost light simulators that meet users' area/intensity/uniformity specifications. [ABSTRACT FROM AUTHOR] |
Databáze: |
Library, Information Science & Technology Abstracts |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|