Autor: |
Avazov, Kuldoshbay1 (AUTHOR), Hyun, An Eui1 (AUTHOR), Sami S, Alabdulwahab Abrar1 (AUTHOR), Khaitov, Azizbek2 (AUTHOR), Abdusalomov, Akmalbek Bobomirzaevich1 (AUTHOR), Cho, Young Im1 (AUTHOR) yicho@gachon.ac.kr |
Předmět: |
|
Zdroj: |
Future Internet. Feb2023, Vol. 15 Issue 2, p61. 13p. |
Abstrakt: |
There is a high risk of bushfire in spring and autumn, when the air is dry. Do not bring any flammable substances, such as matches or cigarettes. Cooking or wood fires are permitted only in designated areas. These are some of the regulations that are enforced when hiking or going to a vegetated forest. However, humans tend to disobey or disregard guidelines and the law. Therefore, to preemptively stop people from accidentally starting a fire, we created a technique that will allow early fire detection and classification to ensure the utmost safety of the living things in the forest. Some relevant studies on forest fire detection have been conducted in the past few years. However, there are still insufficient studies on early fire detection and notification systems for monitoring fire disasters in real time using advanced approaches. Therefore, we came up with a solution using the convergence of the Internet of Things (IoT) and You Only Look Once Version 5 (YOLOv5). The experimental results show that IoT devices were able to validate some of the falsely detected fires or undetected fires that YOLOv5 reported. This report is recorded and sent to the fire department for further verification and validation. Finally, we compared the performance of our method with those of recently reported fire detection approaches employing widely used performance matrices to test the achieved fire classification results. [ABSTRACT FROM AUTHOR] |
Databáze: |
Library, Information Science & Technology Abstracts |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|