Operadores integrais gerados por núcleos em multi-escalas
Autor: | Jordão, Thaís |
---|---|
Jazyk: | portugalština |
Rok vydání: | 2009 |
Předmět: | |
Druh dokumentu: | Dissertação de Mestrado |
Popis: | Neste trabalho, inicialmente, apresentamos uma classe de núcleos positivos definidos, os núcleos de Mercer. As funções nesta classe se enquadram na representação de núcleos dada pelo conhecido Teorema de Mercer. Exploramos algumas de suas propriedades convenientes para o contexto do trabalho e construímos seu espaço nativo. Em seguida, tratamos dos núcleos em multiescalas, um caso particular dos núcleos de Mercer. Após estabelecer algumas propriedades interessantes destes núcleos, analisamos o operador integral gerado por um núcleo em multiescalas, no contexto \'L POT.2\', considerando os seguintes aspectos: limitação, compacidade e positividade do operador, especificidades da imagem do operador e informações sobre seus autovalores e autofunções. Analisamos ainda algumas propriedades do operador integral envolvendo o espaço nativo do núcleo em multiescalas We study Mercer like kernels, a very special class of positive definite kernels possessing the description given by many results labeled as Mercer\'s Theorem. We explore some of their properties which are needed in the development of this work and construct their native space. In the second half of the work, we consider Mercer kernels defined by a multi-scale procedure. After establishing some of its properties, we analyze integral operators generated by multi-scale kernels, in the \'L POT.2\' context, centering on the following aspects: boundedness, compactness, positiveness, eigenvalues and eigen- functions. We also consider additional properties of the operator, mainly those involving the native space of the multi-scale kernel |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |