Cr-invariantes para superfícies em R^4
Autor: | Silva, Jorge Luiz Deolindo |
---|---|
Jazyk: | portugalština |
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Tese de Doutorado |
Popis: | Nesta tese estudamos a geometria extrínseca de superfícies suave em R4 via seu contato com retas e hiperplanos. Uribe-Vargas introduziu um cr-invariante (crossratio) em uma cúspide de Gauss de uma superfície em R3. Para uma superfície em R4, o ponto P3(c) tem comportamento similar a uma cúspide de Gauss de uma superfície em R3. Estabelecemos nesta tese cross-ratio invariantes para superfícies em R4 de uma maneira análoga ao trabalho de Uribe-Vargas para superfícies em R3. Estudamos os lugares geométricos das singularidades locais e multi-locais das projeções ortogonais da superfície e classificamos os k-jatos de parametrizações de germes de superfícies no espaço projetivo P4 dadas na forma de Monge por mudanças projetivas. Os cross-ratio invariantes nos pontos P3(c) são usadas para recuperar os dois módulos no 4-jato da parametrização projetiva da superfície. In this thesis we study the extrinsic geometry of smooth surfaces in R4 via their contact with lines and hyperplanes. Uribe-Vargas introduced a cr-invariant (crossratio) at a cusp of Gauss of a surface in R3. For a surface in R4, the point P3(c) has similar behavior to that of a cusp of Gauss of a surface in R3. We establish in this thesis cross-ratio invariants for surfaces in R4 in an analogous way to Uribe- Vargass work for surfaces in R3. We study the geometric locii of local and multilocal singularities of ortogonal projections of the surface and classify the k-jets of parametrizations of germs of surfaces in the projection space P4 given in Monge form by projective transformations. The cross-ratio invariants at P3(c) points are used to recover two moduli in the 4-jet of the projective parametrization of the surfaces. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |