Partial closure operators and applications in ordered set theory
Autor: | Slivková Anna |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Diplomová práce |
Popis: | In this thesis we generalize the well-known connections between closure operators, closure systems and complete lattices. We introduce a special kind of a partial closure operator, named sharp partial closure operator, and show that each sharp partial closure operator uniquely corresponds to a partial closure system. We further introduce a special kind of a partial clo-sure system, called principal partial closure system, and then prove the representation theorem for ordered sets with respect to the introduced partial closure operators and partial closure systems.Further, motivated by a well-known connection between matroids and geometric lattices, given that the notion of matroids can be naturally generalized to partial matroids (by dening them with respect to a partial closure operator instead of with respect to a closure operator), we dene geometric poset, and show that there is a same kind of connection between partial matroids and geometric posets as there is between matroids and geometric lattices. Furthermore, we then dene semimod-ular poset, and show that it is indeed a generalization of semi-modular lattices, and that there is a same kind of connection between semimodular and geometric posets as there is betweensemimodular and geometric lattices.Finally, we note that the dened notions can be applied to im-plicational systems, that have many applications in real world,particularly in big data analysis. U ovoj tezi uopštavamo dobro poznate veze između operatora zatvaranja, sistema zatvaranja i potpunih mreža. Uvodimo posebnu vrstu parcijalnog operatora zatvaranja, koji nazivamo oštar parcijalni operator zatvaranja, i pokazujemo da svaki oštar parcijalni operator zatvaranja jedinstveno korespondira parcijalnom sistemu zatvaranja. Dalje uvodimo posebnu vrstu parcijalnog sistema zatvaranja, nazvan glavni parcijalni sistem zatvaranja, a zatim dokazujemo teoremu reprezentacije za posete u odnosu na uvedene parcijalne operatore zatvaranja i parcijalne sisteme zatvaranja. Dalje, s obzirom na dobro poznatu vezu između matroida i geometrijskih mreža, a budući da se pojam matroida može na prirodan nacin uopštiti na parcijalne matroide (definišući ih preko parcijalnih operatora zatvaranja umesto preko operatora zatvaranja), definišemo geometrijske uređene skupove i pokazujemo da su povezani sa parcijalnim matroidima na isti način kao što su povezani i matroidi i geometrijske mreže. Osim toga, definišemo polumodularne uređene skupove i pokazujemo da su oni zaista uopštenje polumodularnih mreža i da ista veza postoji između polumodularnih i geometrijskih poseta kao što imamo između polumodularnih i geometrijskih mreža. Konačno, konstatujemo da definisani pojmovi mogu biti primenjeni na implikacione sisteme, koji imaju veliku primenu u realnom svetu, posebno u analizi velikih podataka. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |