FRET-basierte Untersuchungen zur ligandenselektiven Beeinflussung der Rezeptorkonformation durch orthosterische und allosterische Liganden am Beispiel des muskarinischen M2 Acetylcholinrezeptors
Autor: | Bätz, Julia |
---|---|
Jazyk: | němčina |
Rok vydání: | 2012 |
Předmět: | |
Druh dokumentu: | Doctoral Thesis<br />Doctoral Thesis |
Popis: | Zahlreiche experimentelle Befunde lassen vermuten, dass G-Protein gekoppelte Rezeptoren (GPCR) nach ihrer Aktivierung einer ligandenselektiven Änderung der Rezeptorkonformation unterliegen. Ziel der vorliegenden Arbeit war es dieses Phänomen am Subtyp 2 der muskarinischen Acetylcholinrezeptoren (M2 AChR) zu untersuchen. Muskarinische Acetylcholinrezeptoren (mAChR) können in fünf Subtypen (M1-M5) unterschieden werden. Durch die Beteiligung der mAChR an zahlreichen physiologischen Prozessen stellen sie wichtige Zielstrukturen pharmakologischer Therapien dar. Da die orthosterische Ligandenbindestelle (= Bindestelle des endogenen Liganden) in allen fünf Subtypen hoch konserviert ist, wird ihr pharmakologischer Nutzen derzeit allerdings durch die unselektive Rezeptormodulation und dem damit verbundenen Auftreten unerwünschter Arzneimittelwirkungen stark limitiert. Ein Ansatz zur Erzielung subtypselektiver Effekte besteht in der Verwendung allosterischer Modulatoren. Da die allosterische Bindestelle der mAChR eine geringere Sequenzhomologie aufweist, können so gezielt einzelne Subtypen der mAChR reguliert werden. Der M2 AChR stellt hinsichtlich allosterischer Modulation ein gut charakterisiertes Modellsystem dar. Für ihn wurde bereits eine Vielzahl allosterischer Liganden entwickelt. Auch bitopische Liganden, die sowohl einen allosterischen als auch einen orthosterischen Anteil enthalten, wurden für den M2 AChR bereits beschrieben. Im ersten Teil der vorliegenden Arbeit wurden verschiedene FRET-Sensoren des M2 AChR generiert und charakterisiert. Als FRET-Paar wurden das cyan fluoreszierende Protein (CFP) und der niedermolekulare fluorescein-basierte Fluorophor FlAsH (fluorescein arsenical hairpin binder) gewählt. CFP wurde in den Sensoren am Ende des C-Terminus angefügt. Die zur Markierung mit FlAsH nötige Tetracysteinsequenz wurde in verschiedenen Bereichen der dritten intrazellulären Rezeptorschleife (IL) eingebracht. Die auf diese Weise erstellten Re-zeptorsensoren trugen das Tetracysteinmotiv in der N terminalen (M2i3-N) bzw. in der C terminalen Region (M2i3-C) von IL 3. Die Charakterisierung der Rezeptorsensoren bezüglich Ligandenbindung, Gi-Protein Aktivierung und β-Arrestin2 Translokation ergab keine signifikanten Unterschiede zwischen M2i3-N, M2i3 C und M2CFP oder Wildtyp M2 AChR. Zunächst wurden sowohl unterschiedliche orthosterische, als auch allosterische Liganden hinsichtlich ihrer mittleren effektiven Konzentration und ihrer maximalen Wirkstärke an den Rezeptorsensoren untersucht. Mit Hilfe von FRET-Messungen konnte ein superago-nistisches Verhalten des orthosterischen Testliganden Iperoxo gezeigt werden. Die Eigenschaften der allosterischen Substanzen wurden durch Messung der Rezeptordeakti-vierungskinetik und des maximalen Hemmeffekts auf einen vorstimulierten Rezeptor charakterisiert. Alle allosterischen Liganden deaktivierten den vorstimulierten M2 AChR mit einer schnelleren Kinetik als Atropin. Die EC50-Werte der unterschiedlichen Substanzen waren unabhängig von der Markierungsposition im verwendeten Rezeptorsensor vergleich-bar. Ausnahmen bildeten die allosterischen Liganden JK 289, JK 338, ½ W84 und EHW 477, die liganden- und sensorabhängig unterschiedliche mittlere effektive Konzentrationen aufwie-sen. Bei der Untersuchung der Konformationsänderung des M2 AChR konnte kein liganden-selektiver Unterschied zwischen den FRET-Signalen für 19 getestete orthosterische Liganden beobachtet werden. Dies deutet darauf hin, dass alle orthosterischen Testliganden eine dem Acetylcholin (ACh) vergleichbare Änderung der M2 AChR Konformation induzier-ten. Um zu untersuchen, ob für die orthosterischen Testliganden eine Korrelation zwischen ihrer maximalen Wirkstärke hinsichtlich Rezeptoraktivierung in FRET-Experimenten und der Aktivierung nachgeschalteter Signalwege besteht, wurde die orthosterisch-vermittelte Translokation von β-Arrestin2 mit Hilfe der Konfokalmikroskopie bestimmt. Bis auf 5-Methyl-furmethiodid translozierten alle orthosterischen Liganden β-Arrestin2 in einem Ausmaß, das mit der maximalen Rezeptoraktivierung vergleichbar war. Dagegen rief 5 Methylfurmethiodid verglichen mit dem endogenen Liganden ACh zwar eine ca. halbmaximale Rezeptorakti-vierung, aber nur eine äußerst geringe β-Arrestin2 Translokation hervor. Im zweiten Teil der Arbeit wurde der Einfluss verschiedener Allostere auf eine ligandenselektive Konformationsänderung des M2 AChR untersucht. Die allosterischen Liganden JK 337 und Seminaph beeinflussten den M2i3-C Sensor signifikant stärker, als das M2i3-N Konstrukt. Dagegen zeigte EHW 477 eine stärkere Beeinflussung der Rezeptorkon-formation des M2i3-N-, als des M2i3-C Sensors. Dies erlaubt die Vermutung, dass JK 337 und Seminaph eine stärkere Bewegung unterhalb von Transmembrandomäne (TM) 6, als unterhalb von TM 5 hervorriefen. Die Ergebnisse für EHW 477 legen nahe, dass TM 5 eine größere Bewegung eingeht, als TM 6. FRET-basierte Untersuchungen der Einflüsse der allosterischen Testliganden auf nachgeschaltete Signalwege ergaben, dass sowohl die Akti-vierung des Gi Proteins, als auch die β-Arrestin2 Translokation selektiv durch einzelne allosterische Liganden beeinflusst werden. Auch ein Zusammenhang zwischen Rezeptor-aktivierung und der Regulation nachgeschalteter Signalwege war erkennbar. Allerdings waren auf Grund der Versuchsbedingungen keine quantitativen Aussagen möglich. Im Folgenden wurden die bitopischen Liganden Hybrid 1 und 2 (H 1, H 2) hinsichtlich ihres Effekts auf die Konformationsänderung des M2 AChR untersucht. Während eine Stimulation mit H 1 vergleichbare FRET-Signale an beiden Sensoren ergab, konnte mit H 2 weder am M2i3-N-, noch an M2i3-C Sensor eine FRET-Änderung detektiert werden. Um den mangeln-den Effekt der Hybridsubstanzen in FRET-mikroskopischen Untersuchungen aufzuklären, wurden verschiedene Ansätze gewählt: Mit kettenverlängerten Derivaten der Hybridsubstanzen konnte in FRET-Messungen eine Änderung des FRET-Signals detektiert werden. Die Entfernung des allosterischen Bausteins führte in FRET-Experimenten zu einer verglichen mit dem endogenen Liganden ACh etwa halbmaximalen Aktivierung beider Sensoren. Dagegen resultierte die Mutation der alloste-rischen Bindestelle in nachfolgenden FRET-Untersuchungen mit H 1 und H 2 in keiner Signaländerung des FRET-Ratio. Diese Beobachtungen führten zu der Annahme, dass die Linkerkette, die orthosterischen und allosterischen Baustein der Hybride miteinander verbindet, zu kurz war um eine gleichzeitige Bindung an die allosterische und orthosterische Bindestelle zu ermöglichen. Ein anderer Erklärungsansatz besteht darin, dass nach Bindung des Orthosters der Kanal zwischen orthosterischer und allosterischer Bindestelle durch die Konformationsänderung des Rezeptors verschlossen wird, weshalb keine dauerhafte, dualsterische Bindung der Hybridsubstanzen an den M2 AChR möglich ist. Im Rahmen der vorliegenden Arbeit ist es gelungen mittels FRET-Experimenten die Existenz einer ligandenselektiven Rezeptorkonformation des M2 AChR mit allosterischen Liganden nachzuweisen. Darüber hinaus konnte auch ein Bezug zum Auftreten einer funktionellen Selektivität mit allosterischen Liganden hergestellt werden. Die Untersuchung von 19 orthosterischen Liganden hinsichtlich ihres Einflusses auf die Rezeptorkonformation des M2 AChR ergab keinen Hinweis auf eine ligandenselektive Konformationsänderung. Die Betrachtung der orthosterisch-vermittelten Translokation von β-Arrestin2 zeigte, dass zwischen der Effizienz der orthosterischen Testliganden, den M2 AChR zu aktivieren und dem Ausmaß, in dem sie eine β Arrestin2 Translokation induzierten eine direkte Korrelation besteht. Lediglich 5-Methylfurmethiodid rief eine ungleich geringere β-Arrestin2 Translokation hervor, verglichen mit dem Ausmaß an Rezeptoraktivierung. Diese Beobachtung deutet auf die Existenz eines signaling-bias für diesen Liganden hin. Die Untersuchung der dualsterischen Liganden H 1 und 2 bezüglich ihrer Fähigkeit zur Rezeptoraktivierung ergab, dass erst durch eine Verlängerung der Linkerkette, durch die orthosterischer und alloste-rischer Baustein miteinander verbunden sind eine Konformationsänderung des M2 AChR hin zu einer aktiven Konformation erreicht werden kann. Es kann somit angenommen werden, dass in den ursprünglichen Hybridsubstanzen H 1 und H 2 eine zu kurze Linkerkette, durch die keine dualsterische Bindung der Hybride an die allosterische und orthosterische Bindestelle möglich ist, ursächlich für die mangelnde Rezeptoraktivierung des M2 AChR war. A large body of experimental evidence suggests that upon receptor activation G-protein coupled receptors are subject to ligandspecific changes of receptor conformation. The aim of this study was to investigate this phenomenon using the muscarinic M2 acetylcholine receptor (M2 AChR). Muscarinic acetylcholine receptors (mAChR) can be subdivided into five different subtypes (M1-M5). Their involvement in various physiological processes makes them an important target of pharma-cological therapies. With the orthosteric binding site (= binding site of the endogenous ligand) being highly conserved across all five mAChR subtypes, the unselective receptor modulation can lead to severe side effects. Thus the clinical use of drugs modulating muscarinic receptors is currently limited. Allosteric modulation is one attempt to achieve subtype-selective receptor regulation. Since the allosteric binding site of mAChR is less well conserved, it is possible to selectively target one mAChR subtype. As far as allosteric modulation is concerned, the M2 AChR represents a well characterized model with a large number of allosteric modulators being available. For the M2 AChR bitopic ligands which contain an allosteric as well as an orthosteric binding block have been developed as well. In the first part of this study several FRET-sensors of the M2 AChR were designed and characterized. The cyan fluorescent protein (CFP) was fused to the C-terminus of both sensors while the FlAsH (fluorescein arsenical hairpin binder) binding site was inserted into the N-terminal (M2i3-N) or the C terminal (M2i3-C) region of the third interacellular loop (IL). The receptor sensors were characterized concerning ligand affinity, activation of the Gi protein and -arrestin2 translocation and did not display any significant differences compared to the wildtype M2 or the M2 CFP receptor. Various orthosteric as well as allosteric ligands were investigated regarding their affinity and efficacy at both sensors. Using FRET-measurements iperoxo was proven to behave as a superagonist. The characteristics of the allosteric ligands were investigated by measuring the receptor deactivation kinetics and their maximum inhibitory effect on a pre-stimulated receptor. All allosteric test substances displayed faster deactivation kinetics compared to the antagonist atropine and similar EC50 values at both receptor sensors. When investigating the change of receptor conformation of the M2 AChR upon ligand binding there were no ligand selective differences in the FRET-signal detected for either of the 19 orthosteric ligands at both M2 sensors. This data suggest that all orthosteric ligands induced a change in receptor conformation comparable to acetylcholine (ACh). In order to correlate the efficacy of various orthosteric ligands to activate the M2 AChR in FRET-experiments with their effect on downstream signaling pathways, the translocation of arrestin2 upon receptor activation with orthosteric ligands was investigated using confocal microscopy. Except for 5 methylfurmethiodide all orthosteric ligands induced -arrestin2 translocation to an extent which was comparable to the maximal receptor activation observed with each other ligand, respectively. In contrast 5-methylfurmethiodide evoked a half maximal receptor activation compared to the endogenous ligand ACh while only a minimal translocation of -arrestin2 was observed. The second aim of this study was to investigate the effects of allosteric ligands on the change of receptor conformation of the M2 AChR. The allosteric ligands JK 337 and seminaph more strongly influenced the M2i3-C than the M2i3-N, whilst EHW 477 behaved just the opposite way. This data suggest that the orthosteric ligands induce a conformation of the M2 AChR comparable to ACh. JK 337 and seminaph seem to evoke a greater movement underneath TM 6 compared to TM 5 whereas EHW 477 probably induces a larger movement beneath TM 5. The allosteric ligands were tested via FRET-measurements concerning their ability to activate the Gi protein and to translocate arrestin2. The activation of the Gi protein as well as the -arrestin2 translocation were selectively influenced by all allosteric ligands. However, due to the experimental setup, a quantification of the effects was not possible. Furthermore the bitopic ligands hybrid 1 and 2 (H 1, H 2) were tested regarding their effect on the receptor conformation of the M2 AChR. While stimulation with H 1 induced FRET signals that were comparable for both receptor sensors, it wasn’t possible to detect any change in the FRET ratio neither of the M2i3-N nor of the M2i3-C with H 2. The lack of effect of H 1 and H 2 in the FRET-experiments was explored using two different approaches: Derivatives of H 1 and H 2, in which the carbon linker between the allosteric and the orthosteric building block had been elongated, were able to induce changes in the FRET ratio. Upon the removal of the allosteric building block a half-maximal activation of both receptor sensors could be detected. However, the mutation of the allosteric binding site did not result in any change of the FRET-signals upon stimulation of the receptor mutants with H 1 or H 2. These data suggest that the carbon linker, which connects the allosteric and the orthosteric building block, is not long enough to enable a simultaneous binding to the allosteric and the orthosteric binding site. Another explanation would be that upon binding of an orthoster the channel between the orthosteric and the allosteric binding site of the M2 AChR is closed because of the change in receptor conformation, hence a stable, dual-steric binding of the hybrid substances to the M2 AChR would not be possible. In the course of this study it was possible to prove the existence of a ligand selective receptor conformation of the M2 AChR with allosteric ligands using FRET-experiments. In addition a connection was found to the occurrence of a functional selctivity with allosteric ligands. The investigation of 19 orthosteric ligands regarding their influence on the receptor conformation of the M2 AChR did not reveal any evidence of the existence of a ligand selective change of the receptor conformation. Regarding the translocation of β arrestin2 induced by orthosteric ligands there was a direct correlation between the efficency of the orthosteric ligands to activate the receptor and the extend of β-arrestin2 translocation observed. With the only exception being 5-methylfurmethiodide which induced far less β arrestin2 translocation compared to the magnitude of the conformational change of the receptor. This data suggest the existence of a signaling bias for this ligand. The analysis of the dualsteric ligands H 1 and H 2 concerning their ability to activate the M2 AChR revealed that an activation of the M2 AChR could just be observed upon elongation of the linker which connects the orthosteric with the allosteric building block. This suggests that the short linker chain of the original hybrid substances inhibited a dualsteric binding to the orthosteric and the allosteric binding site and thus caused the difficency of H 1 and H 2 to activate the M2 AChR. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |