Quelques théorèmes ergodiques pour des suites de fonctions
Autor: | Cyr, Jean-François |
---|---|
Jazyk: | francouzština |
Rok vydání: | 2012 |
Předmět: |
Processus stationnaires
Transformations qui préservent la mesure Théorèmes ergodiques de Birkhoff et Von Neumann Suites uniformes Théorème ergodique pour les suites uniformes Stationary processes Measure preserving transformations Birkhoff and Von Neumann ergodic theorems Uniform sequences Ergodic theorem along uniform sequences Mathematics / Mathématiques (UMI : 0405) |
Druh dokumentu: | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Popis: | Le théorème ergodique de Birkhoff nous renseigne sur la convergence de suites de fonctions. Nous nous intéressons alors à étudier la convergence en moyenne et presque partout de ces suites, mais dans le cas où la suite est une suite strictement croissante de nombres entiers positifs. C’est alors que nous définirons les suites uniformes et étudierons la convergence presque partout pour ces suites. Nous regarderons également s’il existe certaines suites pour lesquelles la convergence n’a pas lieu. Nous présenterons alors un résultat dû en partie à Alexandra Bellow qui dit que de telles suites existent. Finalement, nous démontrerons une équivalence entre la notion de transformatiuon fortement mélangeante et la convergence d'une certaine suite qui utilise des “poids” qui satisfont certaines propriétés. Birkhoff’s ergodic theorem gives us information about the convergence of sequences of functions. We are then interested in studying the mean and pointwise convergence of these sequences, but in the case the sequence is a strictly increasing sequence of positive integers. With that goal in mind, we will define uniform sequences and study the pointwise convergence for these sequences. We will also explore the possibility that there exists some sequences for which the convergence of the sequence does not occur. We will present a result of Alexandra Bellow that says that such sequences exist. Finally, we will prove a result which establishes an equivalence between the notion of a strongly mixing transformation and the convergence of a sequence that uses “weights” which satisfies certain properties. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |