Étude de la composition chimique des naines M du voisinage solaire grâce à la spectroscopie infrarouge à haute résolution
Autor: | Jahandar, Farbod |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Diplomová práce |
Popis: | La spectroscopie est un aspect fondamental de l'astronomie observationnelle, offrant des contraintes sur la composition, la température, la densité, la masse et le mouvement des objets astronomiques. Cette thèse se concentre spécifiquement sur la spectroscopie des naines M, des étoiles petites et froides de la séquence principale, les plus nombreuses dans notre Galaxie. Malgré leur abondance, les naines M ont été moins étudiées que les étoiles plus brillantes en raison de leur faible luminosité et de leurs spectres complexes dominés par des bandes moléculaires. Cependant, leur importance en astrophysique est profonde, car elles sont cruciales pour comprendre les populations stellaires, l'évolution des galaxies et elles sont des cibles privilégiées dans la recherche et la caractérisation des exoplanètes, en particulier celles semblables à la Terre et potentiellement habitable. La pierre angulaire de notre méthodologie observationnelle est le SpectroPolarimètre InfraRouge (SPIRou), un instrument de pointe situé au Télescope Canada-France-Hawaï (CFHT). Ce spectropolarimètre proche infrarouge (PIR) est spécialisé pour des études lies à la détection et caractérisation d'exoplanètes et divers programmes d'astrophysique stellaire. La spectroscopie à haute résolution de SPIRou opère entre 0.98 et 2.35 microns, avec un pouvoir de résolution d'environ 70000, idéal pour étudier les étoiles relativement froides comme les naines M, qui émettent principalement dans le domaine spectral du proche infrarouge. Sa capacité à détecter des caractéristiques spectrales subtiles est cruciale pour déterminer avec précision les abondances élémentaires, la température effective et la vitesse radiale d'une étoile. De plus, bien que ce ne soit pas l'objectif principal de cette thèse, les capacités polarimétriques de SPIRou offrent des aperçus précieux sur les champs magnétiques des naines M. Notre analyse initiale s'est concentrée sur l'étoile de Barnard, une naine M bien étudiée dans le voisinage solaire. Nous avons comparé les spectres PIR haute résolution observés aux modèles d'atmosphère stellaire PHOENIX-ACES. Bien que ces modèles soient généralement en bon accord avec les observations, de nombreuses différences spectrales sont identifiées telles que le décalage du continuum, de la contamination non résolue de diverses raies de même que le décalage inattendu de raies spectrales de leur longueur d'onde nominale. Tous ces problèmes conspirent à biaiser les déterminations d'abondance et de température effective. Une partie importante de cette étude a impliqué l'identification d'une liste de raies spectrales fiables dans le spectre PIR pour l'analyse chimique. Nous avons développé un pipeline automatisé personnalisé qui prend en compte les incertitudes du modèle, adapté pour déterminer à la fois la température effective et les abondances chimiques basées sur un spectre PIR haute résolution. Pour l'étoile de Barnard, nous avons déterminé une température effective de 3231 +/- 21 K, en excellent accord avec la valeur de 3238 +/- 11 K déduite des méthodes interférométriques considérées comme les plus fiables. De plus, notre analyse a fourni des mesures d'abondance de 15 éléments, dont quatre (K, O, Y, Th) jamais signalés auparavant. Ces mesures sont en bon accord avec la littérature. S'appuyant sur notre étude initiale, nous avons étendu notre méthodologie à un échantillon de 31 naines M proches, dont une dizaine dans des systèmes binaires avec une étoile FGK comme primaire dont la métallicité est bien établie par la spectroscopie haute resolution dans le domaine visible. Cet échantillon permet d'investiguer l'applicabilité et les limites de nos techniques et de fournir une comparaison entre les mesures d'abondance déduites de la spectroscopie PIR et optique. Nous avons caractérisé les incertitudes de notre méthode Teff en la testant sur des modèles synthétiques avec divers niveaux de bruit et avons trouvé une incertitude constante de 10 K pour un rapport signal-bruit supérieur à ~100. La comparaison de nos mesures de température effective sont en excellent accord, à 30 K près, avec des valeurs interférométriques. Nous avons ensuite mesuré les abondances de jusqu'à 10 éléments différents pour ces étoiles, certaines ayant leurs premières compositions chimiques mesurées. Pour les systèmes binaires, nous avons trouvé des métallicités marginalement inférieures dans les naines M par rapport à leurs compagnons FGK dont la métallicité est dérive de la spectroscopie optique, avec des différences moyennes de 0,14 +/- 0,09 dex par rapport aux valeurs rapportées de Mann et al. (2013). On trouve donc un excellent accord entre les mesures d'abondances dérivées de la spectroscopie PIR haute résolution par notre méthode et celles dérivées de la spectroscopie haute résolution optique de leur compagnon FGK. Nos résultats ont contribué à l'analyse spectroscopique des naines M, élargissant le champ de l'analyse d'abondance chimique pour ces étoiles. Nous avons compilé une liste de raies fiables où les modèles PHOENIX montrent un bon accord avec les observations. Nos résultats soulignent la nécessité de modèles d'atmosphère améliorés pour mieux exploiter la puissance de la spectroscopie PIR pour une détermination précise de la température effective et des mesures d'abondance des naines M. Spectroscopy is a foundational aspect of observational astronomy, providing critical insights into the composition, temperature, density, mass, and motion of astronomical objects. This thesis specifically focuses on the spectroscopy of M dwarfs, small and cool stars on the main sequence, which are the most numerous type of stars in our Galaxy. Despite their abundance, M dwarfs have been less studied than brighter stars due to their low luminosity and complex spectra dominated by molecular bands. However, their significance in astrophysics is profound, as they are crucial in understanding stellar populations, galaxy evolution, and are prime targets in the search and characterization of exoplanets, especially Earth-like ones potentially harboring life. The cornerstone of our observational methodology is the SpectroPolarimètre InfraRouge (SPIRou), a cutting-edge instrument housed at the Canada-France-Hawaii Telescope (CFHT). This near-infrared (NIR) spectropolarimeter excels in a range of scientific studies, from exoplanet detection to stellar physics. SPIRou’s high-resolution spectroscopy operates between 0.98 and 2.35 microns, with a resolving power of about 70000, ideal for analyzing cool stars like M dwarfs, which emit predominantly in the NIR spectrum. Its ability to detect subtle spectral features is crucial for accurately determining elemental abundances, effective temperature, and radial velocity of a star. For our research, the high-resolution NIR spectroscopy of SPIRou was essential, allowing us to capture detailed spectra of M dwarfs with high precision, thus forming the foundation of our analysis. Our initial analysis centered on Barnard's star, a well-studied M dwarf in the solar neighborhood. We compared the observed high-resolution NIR spectra to the PHOENIX-ACES stellar atmosphere models. While those models are generally in good agreement with observations, numerous spectral differences are identified such as continuum mismatch, unresolved contamination, and spectral line shifts, all conspiring to bias elemental abundance and effective temperature determinations. A crucial part of this study involved identifying reliable spectral lines in the NIR spectrum for chemical analysis. We developed a customized automated pipeline that takes model uncertainties into account to determine both the effective temperature and chemical abundances based on a high-resolution NIR spectrum. For Barnard's star, we determined an effective temperature of 3231 +/- 21 K, in excellent agreement with the value of 3238 +/- 11 K inferred from interferometric methods. Additionally, our analysis has provided abundance measurements of 15 elements including four (K, O, Y, Th) never reported before. Those measurements are in good agreement with the literature. Building upon our initial study, we extended our methodology to a sample of 31 nearby M dwarfs, including some in binary systems with a FGK star as primary. This sample allows to investigate the broader applicability and potential limitations of our techniques and provide a comparison between abundance measurements inferred from NIR and optical spectroscopy. We investigated the uncertainties of our Teff method by testing it on synthetic models with various level of noise and found a consistent uncertainty of 10 K for signal-to-noise ratio greater than ~100. Our Teff are in excellent agreement with those inferred from interferometric methods within typical dispersion of ~30 K, comparable to the apparent noise floor of our Teff estimates, showing the validity of our method. We then measured the abundances for up to 10 different elements for these stars, many of them being their first measured chemical compositions. For the binary systems, we find an excellent agreement between our metallicities of M dwarfs compared to their FGK counterparts derived from optical spectroscopy, with with mean differences of 0.14 +/- 0.09 dex against the reported values from Mann et al. (2013). Our findings have contributed to the spectroscopic analysis of M dwarfs, broadening the scope of chemical abundance analysis for these stars. We compiled a reliable line list where PHOENIX models show good agreement with observations. Our results emphasize the need for improved atmosphere models to fully exploit the power of NIR spectroscopy for precise determination of effective temperature and abundance measurements of M dwarfs. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |