Calibrated uncertainty estimation for SLAM
Autor: | Bansal, Dishank |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Diplomová práce |
Popis: | La focus de cette thèse de maîtrise est l’analyse de l’étalonnage de l’incertitude pour la lo- calisation et la cartographie simultanées (SLAM) en utilisant des modèles de mesure basés sur les réseaux de neurones. SLAM sont un problème fondamental en robotique et en vision par ordinateur, avec de nombreuses applications allant des voitures autonomes aux réalités augmentées. Au cœur de SLAM, il s’agit d’estimer la pose (c’est-à-dire la position et l’orien- tation) d’un robot ou d’une caméra lorsqu’elle se déplace dans un environnement inconnu et de construire simultanément une carte de l’environnement environnant. Le SLAM visuel, qui utilise des images en entrée, est un cadre de SLAM couramment utilisé. Cependant, les méthodes traditionnelles de SLAM visuel sont basées sur des caractéristiques fabriquées à la main et peuvent être vulnérables à des défis tels que la mauvaise luminosité et l’occultation. L’apprentissage profond est devenu une approche plus évolutive et robuste, avec les réseaux de neurones convolutionnels (CNN) devenant le système de perception de facto en robotique. Pour intégrer les méthodes basées sur les CNN aux systèmes de SLAM, il est nécessaire d’estimer l’incertitude ou le bruit dans les mesures de perception. L’apprentissage profond bayésien a fourni diverses méthodes pour estimer l’incertitude dans les réseaux de neurones, notamment les ensembles, la distribution sur les paramètres du réseau et l’ajout de têtes de prédiction pour les paramètres de distribution de la sortie. Cependant, il est également important de s’assurer que ces estimations d’incertitude sont bien étalonnées, c’est-à-dire qu’elles reflètent fidèlement l’erreur de prédiction. Dans cette thèse de maîtrise, nous abordons ce défi en développant un système de SLAM qui intègre un réseau de neurones en tant que modèle de mesure et des estimations d’in- certitude étalonnées. Nous montrons que ce système fonctionne mieux que les approches qui utilisent la méthode traditionnelle d’estimation de l’incertitude, où les estimations de l’incertitude sont simplement considérées comme des hyperparamètres qui sont réglés ma- nuellement. Nos résultats démontrent l’importance de tenir compte de manière précise de l’incertitude dans le problème de SLAM, en particulier lors de l’utilisation d’un réseau de neur. The focus of this Masters thesis is the analysis of uncertainty calibration for Simultaneous Localization and Mapping (SLAM) using neural network-based measurement models. SLAM is a fundamental problem in robotics and computer vision, with numerous applications rang- ing from self-driving cars to augmented reality. At its core, SLAM involves estimating the pose (i.e., position and orientation) of a robot or camera as it moves through an unknown environment and constructing a map of the surrounding environment simultaneously. Vi- sual SLAM, which uses images as input, is a commonly used SLAM framework. However, traditional Visual SLAM methods rely on handcrafted features and can be vulnerable to challenges such as poor lighting and occlusion. Deep learning has emerged as a more scal- able and robust approach, with Convolutional Neural Networks (CNNs) becoming the de facto perception system in robotics. To integrate CNN-based methods with SLAM systems, it is necessary to estimate the uncertainty or noise in the perception measurements. Bayesian deep learning has provided various methods for estimating uncertainty in neural networks, including ensembles, distribu- tions over network parameters, and adding variance heads for direct uncertainty prediction. However, it is also essential to ensure that these uncertainty estimates are well-calibrated, i.e they accurately reflect the error in the prediction. In this Master’s thesis, we address this challenge by developing a system for SLAM that incorporates a neural network as the measurement model and calibrated uncertainty esti- mates. We show that this system performs better than the approaches which uses traditional uncertainty estimation method, where uncertainty estimates are just considered hyperpa- rameters which are tuned manually. Our results demonstrate the importance of accurately accounting for uncertainty in the SLAM problem, particularly when using a neural network as the measurement model, in order to achieve reliable and robust localization and mapping. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |