Développement de nouveaux électrolytes solides à base de mélanges de polymères pour les batteries lithium

Autor: Caradant, Léa
Jazyk: francouzština
Rok vydání: 2023
Předmět:
Druh dokumentu: Diplomová práce
Popis: Les recherches réalisées au cours de ce doctorat portent sur l’étude et l’optimisation de mélanges de polymères, utilisés en tant qu’électrolytes solides polymères (SPEs) dans les batteries lithium et lithium-ion. Les composants de la batterie doivent pouvoir être mis en forme par un procédé sans solvant (extrusion), afin de réduire les impacts du solvant sur les propriétés de la batterie et d’optimiser la production (diminution de la toxicité et du temps de production). Pour répondre à ces objectifs, une étude a d’abord été menée sur des mélanges de polymères, sélectionnés d’après leurs propriétés individuelles, en se concentrant notamment sur les interactions entre le sel de lithium et chaque polymère. Un classement des interactions a été développé et a permis de montrer que le principal facteur les favorisant est le nombre donneur des groupements fonctionnels polaires présents sur les chaînes polymères. Enfin, les effets de ces interactions sur les phénomènes de transport ionique dans les mélanges ont été investigués. Par la suite, l’étude s’est focalisée sur les couples de polymères ayant des propriétés prometteuses et complémentaires, tels que le poly(oxyde d’éthylène) (POE) ou le polycaprolactone (PCL), qui ont des conductivités ioniques élevées, et un copolymère butadiène-acrylonitrile hydrogéné (HNBR), qui possède des propriétés mécaniques intéressantes mais une conductivité ionique limitée. Il a été conclu que ces mélanges présentent des propriétés encourageantes, comparées aux SPEs composés d’un unique polymère, telles que des conductivités ioniques élevées sur une large plage de températures, ainsi que de meilleures propriétés de stabilités mécanique et thermique. La dernière partie de ces travaux s’est portée sur l’optimisation des propriétés de ces mélanges, par une méthode innovante de réticulation sélective d’une des phases. Pour conclure ce doctorat, l’objectif final a été de réaliser un prototype performant de batterie lithium tout solide, entièrement obtenu par extrusion, et dont l’électrolyte et le liant au sein des électrodes composites sont composés des électrolytes polymères optimisés. Les résultats prometteurs obtenus ont permis la soumission d’un brevet, en association avec le partenaire industriel (TotalEnergies).
The research carried out during this PhD is focused on the study and optimization of polymer blends, used as solid polymer electrolytes (SPEs) in lithium and lithium-ion batteries. All components of the battery must be shaped by a solvent-free process (extrusion), in order to limit impacts of the solvent on the battery properties and improve the production process (reduce toxicity and production time). To achieve these objectives, a study was first conducted on a set of polymer blends, selected on the basis of their individual properties, with particular emphasis on the interactions between the lithium salt and each polymer. A ranking of the lithium salt solvating ability of these polymers was developed and revealed that the main factor affecting these interactions is the donor number of polar functional groups on the polymer backbones. The effects of these interactions on the ionic transport phenomena in blend electrolytes have been examined. Subsequent work focused on polymer couples with the most promising and complementary properties, such as poly(ethylene oxide) (PEO) or polycaprolactone (PCL), which exhibit high ionic conductivities, and a hydrogenated nitrile butadiene rubber (HNBR) with interesting mechanical properties but a lower ionic conductivity. It was concluded that these blends show encouraging properties, compared to single-polymer SPEs, such as higher ionic conductivities over a wide temperature range, as well as improved mechanical and thermal stability properties. The final research project was the optimization of these blend electrolytes using an innovative method of selective cross-linking of one of the polymer phases. The main aim of this thesis was to develop an efficient prototype of an all-solid-state lithium battery, entirely obtained by extrusion, in which both the electrolyte and the binder of the composite electrodes are composed of optimized polymer electrolytes. The promising results obtained have led to the filing of a patent, in association with the industrial partner (TotalEnergies).
Databáze: Networked Digital Library of Theses & Dissertations