Investigation of neural activity in Schizophrenia during resting-state MEG : using non-linear dynamics and machine-learning to shed light on information disruption in the brain
Autor: | Alamian, Golnoush |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Schizophrénie
Dépression État-de-repos Magnétoencéphalographie Apprentissage-machine Criticalité Invariance d’échelle Psychiatrie Connectivité Multifractalité Schizophrenia Resting-state Magnetoencephalography Machine-Learning Criticality Scale-free Psychiatry Connectivity Multifractality Psychology - Physiological / Psychologie physiologique (UMI : 0989) |
Druh dokumentu: | Diplomová práce |
Popis: | Environ 25% de la population mondiale est atteinte de troubles psychiatriques qui sont typiquement associés à des problèmes comportementaux, fonctionnels et/ou cognitifs et dont les corrélats neurophysiologiques sont encore très mal compris. Non seulement ces dysfonctionnements réduisent la qualité de vie des individus touchés, mais ils peuvent aussi devenir un fardeau pour les proches et peser lourd dans l’économie d’une société. Cibler les mécanismes responsables du fonctionnement atypique du cerveau en identifiant des biomarqueurs plus robustes permettrait le développement de traitements plus efficaces. Ainsi, le premier objectif de cette thèse est de contribuer à une meilleure caractérisation des changements dynamiques cérébraux impliqués dans les troubles mentaux, plus précisément dans la schizophrénie et les troubles d’humeur. Pour ce faire, les premiers chapitres de cette thèse présentent, en intégral, deux revues de littératures systématiques que nous avons menées sur les altérations de connectivité cérébrale, au repos, chez les patients schizophrènes, dépressifs et bipolaires. Ces revues révèlent que, malgré des avancées scientifiques considérables dans l’étude de l’altération de la connectivité cérébrale fonctionnelle, la dimension temporelle des mécanismes cérébraux à l’origine de l’atteinte de l’intégration de l’information dans ces maladies, particulièrement de la schizophrénie, est encore mal comprise. Par conséquent, le deuxième objectif de cette thèse est de caractériser les changements cérébraux associés à la schizophrénie dans le domaine temporel. Nous présentons deux études dans lesquelles nous testons l’hypothèse que la « disconnectivité temporelle » serait un biomarqueur important en schizophrénie. Ces études explorent les déficits d’intégration temporelle en schizophrénie, en quantifiant les changements de la dynamique neuronale dite invariante d’échelle à partir des données magnétoencéphalographiques (MEG) enregistrés au repos chez des patients et des sujets contrôles. En particulier, nous utilisons (1) la LRTCs (long-range temporal correlation, ou corrélation temporelle à longue-distance) calculée à partir des oscillations neuronales et (2) des analyses multifractales pour caractériser des modifications de l’activité cérébrale arythmique. Par ailleurs, nous développons des modèles de classification (en apprentissage-machine supervisé) pour mieux cerner les attributs corticaux et sous-corticaux permettant une distinction robuste entre les patients et les sujets sains. Vu que ces études se basent sur des données MEG spontanées enregistrées au repos soit avec les yeux ouvert, ou les yeux fermées, nous nous sommes par la suite intéressés à la possibilité de trouver un marqueur qui combinerait ces enregistrements. La troisième étude originale explore donc l’utilité des modulations de l’amplitude spectrale entre yeux ouverts et fermées comme prédicteur de schizophrénie. Les résultats de ces études démontrent des changements cérébraux importants chez les patients schizophrènes au niveau de la dynamique d’invariance d’échelle. Elles suggèrent une dégradation du traitement temporel de l’information chez les patients, qui pourrait être liée à leurs symptômes cognitifs et comportementaux. L’approche multimodale de cette thèse, combinant la magétoencéphalographie, analyses non-linéaires et apprentissage machine, permet de mieux caractériser l’organisation spatio-temporelle du signal cérébrale au repos chez les patients atteints de schizophrénie et chez des individus sains. Les résultats fournissent de nouvelles preuves supportant l’hypothèse d’une « disconnectivité temporelle » en schizophrénie, et étendent les recherches antérieures, en explorant la contribution des structures cérébrales profondes et en employant des mesures non-linéaires avancées encore sous-exploitées dans ce domaine. L’ensemble des résultats de cette thèse apporte une contribution significative à la quête de nouveaux biomarqueurs de la schizophrénie et démontre l’importance d’élucider les altérations des propriétés temporelles de l’activité cérébrales intrinsèque en psychiatrie. Les études présentées offrent également un cadre méthodologique pouvant être étendu à d’autres psychopathologie, telles que la dépression. Psychiatric disorders affect nearly a quarter of the world’s population. These typically bring about debilitating behavioural, functional and/or cognitive problems, for which the underlying neural mechanisms are poorly understood. These symptoms can significantly reduce the quality of life of affected individuals, impact those close to them, and bring on an economic burden on society. Hence, targeting the baseline neurophysiology associated with psychopathologies, by identifying more robust biomarkers, would improve the development of effective treatments. The first goal of this thesis is thus to contribute to a better characterization of neural dynamic alterations in mental health illnesses, specifically in schizophrenia and mood disorders. Accordingly, the first chapter of this thesis presents two systematic literature reviews, which investigate the resting-state changes in brain connectivity in schizophrenia, depression and bipolar disorder patients. Great strides have been made in neuroimaging research in identifying alterations in functional connectivity. However, these two reviews reveal a gap in the knowledge about the temporal basis of the neural mechanisms involved in the disruption of information integration in these pathologies, particularly in schizophrenia. Therefore, the second goal of this thesis is to characterize the baseline temporal neural alterations of schizophrenia. We present two studies for which we hypothesize that the resting temporal dysconnectivity could serve as a key biomarker in schizophrenia. These studies explore temporal integration deficits in schizophrenia by quantifying neural alterations of scale-free dynamics using resting-state magnetoencephalography (MEG) data. Specifically, we use (1) long-range temporal correlation (LRTC) analysis on oscillatory activity and (2) multifractal analysis on arrhythmic brain activity. In addition, we develop classification models (based on supervised machine-learning) to detect the cortical and sub-cortical features that allow for a robust division of patients and healthy controls. Given that these studies are based on MEG spontaneous brain activity, recorded at rest with either eyes-open or eyes-closed, we then explored the possibility of finding a distinctive feature that would combine both types of resting-state recordings. Thus, the third study investigates whether alterations in spectral amplitude between eyes-open and eyes-closed conditions can be used as a possible marker for schizophrenia. Overall, the three studies show changes in the scale-free dynamics of schizophrenia patients at rest that suggest a deterioration of the temporal processing of information in patients, which might relate to their cognitive and behavioural symptoms. The multimodal approach of this thesis, combining MEG, non-linear analyses and machine-learning, improves the characterization of the resting spatiotemporal neural organization of schizophrenia patients and healthy controls. Our findings provide new evidence for the temporal dysconnectivity hypothesis in schizophrenia. The results extend on previous studies by characterizing scale-free properties of deep brain structures and applying advanced non-linear metrics that are underused in the field of psychiatry. The results of this thesis contribute significantly to the identification of novel biomarkers in schizophrenia and show the importance of clarifying the temporal properties of altered intrinsic neural dynamics. Moreover, the presented studies offer a methodological framework that can be extended to other psychopathologies, such as depression. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |