The extracellular matrix as a biomaterial to optimize skeletal muscle regeneration

Autor: Trignol, Aurélie
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Druh dokumentu: Text
Popis: Le muscle strié squelettique possède de grandes capacités de régénération grâce à ses cellules souches, les cellules satellites. Après une lésion, le processus de régénération musculaire qui se met en place est finement régulé dans le temps et l’espace par le microenvironnement, constitué de cellules avoisinantes mais également par des éléments de la matrice extracellulaire (MEC). Cette dernière se compose de molécules structurales comme les collagènes et de composants possédant un rôle trophique comme les glycosaminoglycanes (GAGs). La MEC musculaire est peu étudiée à cause d’une organisation tridimensionnelle complexe rendant son exploration difficile. Lors d’une lésion avec perte de substance musculaire, la régénération est altérée, associée à une fibrose et une inflammation chronique. Ce type de lésion est fréquemment rencontré en traumatologie mais survient également chez le blessé de guerre. Malgré un traitement optimal, une invalidité fonctionnelle persiste chez ces patients. L’utilisation d’un biomatériau décellularisé, constitué de MEC pourrait fournir ce support physique et trophique faisant défaut dans ce type de lésion. Dans ce travail, nous avons entrepris l'établissement d'une MEC d’origine musculaire et nous avons établi un protocole de décellularisation permettant d’obtenir un biomatériau conservant l’architecture spécifique de la MEC musculaire avec une élimination de la majorité des antigènes cellulaires afin d'éviter une réponse immunitaire délétère après implantation. Néanmoins, le protocole retenu ne permet de conserver certaines molécules trophiques d’intérêt comme les GAGs. Les « ReGeneRaTing Agent®» (RGTA®) sont des mimétiques fonctionnels de ces GAGs, utilisés en clinique pour améliorer la cicatrisation cutanée et cornéenne. Ces mimétiques conservent une capacité de liaison aux facteurs de croissance avec une résistance aux dégradations enzymatiques. Nous avons évalué l’utilisation de ces molécules au cours de la réparation musculaire, dans un modèle in vivo chez le rongeur. Nous avons réalisé une analyse histologique précoce (8e jour de régénération) mettant en évidence une augmentation du nombre de noyaux par myofibre en faveur d’une augmentation de la fusion, validée également in vitro sur des progéniteurs musculaires. Nous avons également observé une augmentation du nombre de vaisseaux, suggérant une amélioration de l’angiogenèse. Le nombre de gouttelettes lipidiques, marqueur d’une mauvaise régénération, était en diminution. L’exploration histologique plus tardive (28e jour de régénération) n’a retrouvé que l’augmentation du nombre de vaisseaux en faveur d’un effet durable sur l’angiogenèse. Ces RGTA® peuvent être couplés aux biomatériaux et sont particulièrement résistants dans un environnement inflammatoire pouvant être rencontré dans les lésions avec perte de substance musculaire. Des chimiokines et des facteurs de croissance pourront également être ajoutés au biomatériau matriciel afin de favoriser la migration des différents progéniteurs nécessaires à une néoformation musculaire. L’efficacité thérapeutique de ces biomatériaux optimisés nécessitera d’être évaluée dans un modèle in vivo de perte de substance
Skeletal muscle exhibits high capacity for regeneration after an injury that relies on resident stem cells. Muscle regeneration is tightly regulated by both the immune response and other resident cells, as well as by cues from the local extracellular matrix (ECM), contributing to a coordinated repair process. Muscle ECM is a network of structural macromolecules with a large majority of collagens and trophic molecules such as glycosaminoglycans (GAGs). In the skeletal muscle tissue, ECM was overlooked due to its complex organization making investigations difficult. Muscle regenerative ability can be overtaken in large muscle wasting, such as in volumetric muscle loss (VML), leading to fibrosis formation and chronic inflammation. This type of injury predominantly occurs in traumatology and in war-wounded patients, with functional disability despite an optimal treatment. The use of biomaterials could provide the biochemical and physical cues that are missing in this pathologic repair. In this work we have focused on obtaining a biomaterial composed of skeletal muscle ECM. We have tested several decellularization protocols both to preserve the three-dimensional architecture of the muscle ECM and to completely remove cell components in order to avoid a deleterious immune response after implantation. However, the protocol did not allow the preservation of trophic molecules such as GAGs, in the scaffold.“ReGenerating Agents” (RGTA®) are functionally analogous of GAGs with a crucial property to resist enzymatic degradation. They function to restore a proper microenvironment for tissue healing with already a clinical application in skin and corneal repair. We have explored the effects of RGTA® in muscle regeneration using an in vivo model in mouse. At early time of regeneration (day 8), we performed histologic analysis. We showed that regenerating myofibers contained more nuclei in the treated animals, in favor of an increase of progenitor fusion, which has been validated in vitro in myogenic cultures. The number of capillaries was higher in favor of a better angiogenesis. Lipid droplets, a marker of impaired regeneration, were reduced by RGTA® administration. At later time of regeneration (day 28), capillary number was still improved in favor of a durable effect of RGTA® on angiogenesis. RGTA® could be incorporated into biomaterials and are particularly resistant in an inflammatory environment, such as that occurring after a VML injury. Chemokines and growth factors could also be added in ECM-based scaffolds to promote the migration of progenitors that are essential for myofiber neoformation. Therapeutic efficacy of these optimized biomaterials will require to be evaluated in an in vivo model of VML
Databáze: Networked Digital Library of Theses & Dissertations