Étude aéropropulsive d'un micro-drone à voilure tournante pour l'exploration martienne
Autor: | Desert, Thibault |
---|---|
Jazyk: | francouzština |
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Text |
Popis: | Un micro-drone à voilure tournante est l’appareil aérien optimal pour assister un rover d’exploration à lanavigation sur la planète Mars. Toutefois, les écoulements qu’il rencontre sont compressibles à très faiblenombre de Reynolds, ce qui constitue un domaine de l’aérodynamique inédit et quasiment inexploré à cejour. L’objectif de la thèse est de comprendre, simuler et recréer expérimentalement les phénomènes aérodynamiquesliés au régime inédit des écoulements martiens pour concevoir un système propulsif performant.Après avoir validé les outils de simulation numérique, le comportement instationnaire des écoulements estétudié sur des géométries 2D et 3D. L’écoulement est dominé par la viscosité : les couches limites laminairessont épaisses et le décollement a beaucoup d’influence sur son comportement très instationnaire.Par la suite, plusieurs millions de géométries de profil sont évaluées par un processus d’optimisation basésur un code 2D stationnaire. Les profils optimisés sont fortement cambrés (entre 5.5% et 7%) et de faibleépaisseur relative (e/c ∼ 2%). Le bord d’attaque et le bord de fuite sont très cambrés pour permettrerespectivement l’adaptation à l’écoulement incident et la fixation du point de décollement de la couchelimite. À partir des géométries de profils, l’ensemble du système propulsif est optimisé par intégration despolaires 2D. La théorie des éléments de pale permet de déterminer rapidement les configurations les plusperformantes aérodynamiquement. Et une méthode de sillage libre permet l’optimisation de rotors isoléset de systèmes propulsifs coaxiaux. Les rotors ont des solidités et des vrillages importants, ce qui rappelleles formes d’hélices marines. Les simulations Navier-Stokes 3D mettent en évidence la tridimensionnalitédes écoulements sur la pale, elle est fortement corrélée avec la solidité du rotor et le vrillage de bout depale. La rotation stabilise la couche limite et donne lieu à un décollement stable au bord d’attaque pourcertaines géométries. Le dévrillage en bout de pale permet de stabiliser le tourbillon et de diminuer la perteinduite. Un banc de mesure est placé dans un caisson dépressurisé pour estimer les efforts de poussée et decouple générés par les rotors optimisés en conditions aérodynamiques martiennes. Les essais permettentde valider les tendances d’estimation des codes de simulation ainsi que les processus d’optimisation. Laconfiguration bi-rotors coaxiaux, en comparaison avec une configuration à deux rotors adjacents, permetun gain d’encombrement de moitié pour une perte sur la puissance de seulement 15%. C’est la configurationla plus adaptée pour un micro-drone en atmosphère ténue. Un système propulsif coaxial optimisé (dediamètre 30 cm) permettrait de sustenter un micro-drone d’environ 400 grammes en conditions nominalessur la planète Mars. A micro-rotorcraft is the most suited aerial vehicle for rover navigation assistance on Mars. The martianatmosphere’s density, being hundred times lower than on Earth, requires the micro-drone to hover at highrotational speed. Hence, flows on the blade are both compressible and at very low Reynolds number (fewthousands). It constitutes a new aerodynamic domain to be explored. The purpose of the dissertation isto understand, simulate and experimentally duplicate the aerodynamic phenomena in a view to design anefficient propulsion system. After a phase of validation of the simulation tools, the flows’ unsteady behavioris studied on 2D and 3D geometries. Wall flow is highly viscous : laminar boundary layers are thick andtheir separation has a huge influence on its unsteadiness. Then, several millions of airfoil geometries areevaluated by an optimization process based on a steady 2D solver. As final result, the optimized airfoildisplays a highly cambered shape (between 5.5% and 7%) with low relative thickness (t/c ∼ 2%). Leadingand trailing edges are strongly cambered, allowing proper incoming flow adaptation and late boundarylayer separation. Based on this airfoil geometry, rotor shapes are optimized by two methods. Blade elementtheory provides a quick investigation of the most aerodynamically efficient configurations. And a free wakesolver is applied for the final design of isolated rotors and coaxial dual-rotors. Optimized shapes exhibitimportant twist and solidity, evoking marine propellers. 3D Navier-Stokes simulations highlight the flow’sthree-dimensional mechanisms on the blade, which are highly correlated to the rotor’s solidity and twist.Rotation stabilizes the blade’s boundary layer and a stable leading edge separation is observed in somecases. Blade tip twist reduction diminishes the tip vortex and the induced loss. A thrust and torquemeasurement setup is placed in a depressurized tank for the evaluation of optimized rotors in martianatmospheric conditions. Performed experiments confirm the solvers’ trend and validate the design process.Therefore, chosen coaxial dual-rotors configuration provides an important size gain for a low correspondingpower loss (∼ 15%) compared to adjacent dual-rotors. Coaxial dual-rotors are the optimal configuration fora micro-rotorcraft in low-pressure atmosphere flight conditions. Such propulsion system (with a diameterof 30 cm) could lift a 400 grams micro-rotorcraft in hover on the planet Mars. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |