Central auditory pathways study using Magnetic Resonance Imaging

Autor: Attyé, Arnaud
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Druh dokumentu: Text
Popis: 1er objectif : Mieux caractériser les surdités neuro-sensoriellesNous avons démontré dans ce travail de thèse que nous étions capablesd’individualiser le saccule et l’utricule pour faire le diagnostic d’hydropscompartiment par compartiment. L’intérêt repose sur les propriétés biomecaniquesdifferentes de ces deux structures notamment en terme decompliance. En isolant l’hydrops sacculaire, nous avons démontré qu’ilétait lié à la présence de surdité neurosensorielle pour les patients avecune Maladie de Ménière mais également qu’il pouvait être détecté pourdes patients présentant des surdités isolées sur les basses fréquences, quine sont habituellement pas classées comme porteurs cliniquement de laMaladie de Ménière. Nous avons mis au point une séquence 3D-FLAIRutilisable en pratique clinique pour la détection d’hydrops sacculaire,utilisable quelque soit le champ magnétique et le constructeur.Pour les patients porteurs de schwannomes cochléo-vestibulaires, nousavons démontré que le degré de perte auditive était cette fois liée à laprésence d’un hydrops utriculaire. Ce diagnostic peut être porté sansinjection de produit de contraste puisque la présence d’un schwannomeobstructif entraine mécaniquement une augmentation du taux protidiquedans la périlymphe et donc une discrimination périlymphe/endolymphesur les séquences T2 en echo de gradient.En revisitant l’anatomie histologique avec la remnographie, nous avonsproposé une théorie bi-compartimentale pour les échanges endolymphe/liquidecéphalorachidien ; supposant que l’utricule et le saccule joue un rôle detampon entre le cerveau et la cochlée. En cas d’obstruction mécanique,au niveau de l’aqueduc du vestibule pour la maladie de Ménière et dunerf cochléo-vestibulaire pour les tumeurs du conduit auditif interne ; letampon ne joue plus son rôle. Surviennent alors des lésions cellulaires desstéréocils de la cochlée et la surdité attenante.2ème objectif : Mieux caractériser les altérations structurelles neuronalesrétro-cochléaires des surdités neurosensoriellesDu point de vue biophysique de l’IRM, l’étude du nerf cochléaire possèdel’avantage de posséder une structure simple essentiellement composéed’une seule population de fibre à modéliser par voxel, au prix d’une régiond’étude compliquée intricant de l’os, du liquide et de l’air dans l’ostemporal. Nous avons donc commencer par développer un algorithmede pré-traitement des données de diffusion qui utilise toutes les toolboxrécentes pour corriger les artéfacts de susceptibilité magnétique, de mouvements, de champ B0 et B1, les courants de Foucaults, les arrtéfactsde Gibbs. Nous avons utilisée une séquence de Diffusion optimisée pourêtre utilisable en pratique clinique en cas de mouvements des patients,construite par bloc de 15 directions.Nous avons ensuite appris à utiliser des biomarqueurs quantitatifs, notammentle coefficient de diffusion apparent des fibres, directement issusdu signal de Diffusion dont nous avons préalablement testé la fiabilitésur des données de diffusion multi-compartimentale de haute qualité auniveau de l’encéphale. Nous avons ensuite proposée une méthode originaled’extraction de l’information des voxels du nerf cochléaire appelée spectralclustering pour obtenir ce coefficient de densité des fibres de façon robusteau niveau de notre population témoin. Enfin, nous avons implémenté unalgorithme de Manifold Learning pour l’analyse de ce signal de diffusion,qui surpasse les biomarqueurs scalaires en confrontation à des modèlespathologiques auditifs en tenant compte de l’hétérogénité du signal dediffusion dans un cluster. Nous avons ainsi démontré que les patientsporteurs de la maladie de Ménière présentaient une augmentation de ladensité de fibre, en faisant de particulier bosn candidats à l’implantationcochléaire, en accord avec les premières études cliniques fonctionnellessur le sujet.
Sensorineural hearing loss (SNHL) is a common functional disorder in humans. Besides clinical investigations, magnetic resonance imaging (MRI) is the modality of choice to explore the central auditory pathways. Indeed, new MRI sequences and postprocessing methods have revolutionized our understanding of inner ear and brain disorders.The inner ear is the organ of sound detection and balance. Within the inner ear, there are two distinct compartments filled with endolymph and perilymph.The accumulation of endolymph fluid is called “endolymphatic hydrops”. Endolymphatic hydrops may occur as a consequence of a variety of disorders, including Meniere’s Disease, immune-mediated diseases or internal auditory canal tumors.Previous classification for grading the amount of endolymph liquid using MRI has proposed a global semi-quantitative evaluation, without distinguishing the utricle from the saccule, whose biomechanical properties are different in terms of compliance.This work had two main objectives: 1°) to better characterize the role of endolymphatic hydrops in SNHL occurrence; 2°) to study secondary auditory pathways alterations.Part 1: Understanding the role and pathophysiology of endolymphatic hydrops in SNHL occurrence.Endolymphatic hydrops can be identified using MRI, acquired 4-6-hours after injection of contrast media. This work has demonstrated the feasibility and improved this technique in a clinical setting.Using optimized morphological sequences, we were able to illustrate inner ear microanatomy based on temporal bone dissection, and to distinguish the saccule and the utricle.In accordance with a multi-compartmental model, we observed that the saccular hydrops was a specific biomarker of low-tone SNHL in the context of typical or atypical forms of Meniere’s Disease. In addition, utricular hydrops was linked to the degree of hearing loss in patients with schwannomas. We raise the hypothesis that both saccule and utricle compartment play the role of a buffer in endolymph reabsorption. When their compliance is overstretched, inner ear endolymph regulation fails, subsequently leading to cochlear lesions such as loss of the shorter stereocilia of the hair cells, as suggested by experimental animal modelsThus, we were able to prove the high prevalence of endolymphatic hydrops in patients with SNHL.Part 2: Development of new imaging biomarkers to study the central auditory pathways.Diffusion-Weighted Imaging play a crucial role because it can help to assess the intracellular compartment by displaying the Brownian movements of water molecules. In the context of cochlear lesions, anterograde axonal degeneration has only been demonstrated in animal models. In the context of retrocochlear lesions, no MRI sequences have previously showed efficiency in distinguishing the cochlear from the facial nerve. This is crucial for safe surgery procedure.We have designed optimized postprocessing tools to explore SNHL patients with High-Angular Resolution DWI acquisition. We have included in the clinical setting software tools for B0 and B1 bias field artifacts’ correction, Denoising process, Gibbs artifacts’ correction, Susceptibility and Eddy Current artifacts management.The ultimate goal was to properly study the Fiber Orientation Distribution (FOD) along the auditory pathways in case-controlled studies, using top-of-the-art methods of fixels analysis and a newly developed toolbox with Machine Learning analysis of the Diffusion signal.We have studied reproducibility of these two methods on Multi-Shell Diffusion gradient scheme by test-retest procedure. We have then used the fixel method to seek for auditory pathways alterations in Meniere’s Disease and Machine Learning automatic analyses to extract Inner Auditory Canal cranial nerves.Thus, we have developed a new method for cranial nerves’ tractography using FOD spectral clustering, efficient in terms of computer requirement and in tumor condition.
Databáze: Networked Digital Library of Theses & Dissertations