Etude des modèles à composition mixée pour l'analyse de réseaux complexes
Autor: | Dulac, Adrien |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Text |
Popis: | Les données relationnelles sont omniprésentes dans la nature et leur accessibilité ne cesse d'augmenter depuis ces dernières années. Ces données, vues comme un tout, forment un réseau qui peut être représenté par une structure de données appelée graphe où chaque nœud du graphe est une entité et chaque arête représente une relation ou connexion entre ces entités. Les réseaux complexes en général, tels que le Web, les réseaux de communications ou les réseaux sociaux sont connus pour exhiber des propriétés structurelles communes qui émergent aux travers de leurs graphes. Dans cette thèse, nous mettons l'accent sur deux importantes propriétés appelées *homophilie* et *attachement préférentiel* qui se produisent dans un grand nombre de réseaux réels. Dans une première phase, nous étudions une classe de modèles de graphes aléatoires dans un contexte Bayésien non-paramétrique, appelé *modèle de composition mixée*, et nous nous concentrons à montrer si ces modèles satisfont ou non les propriétés mentionnées, après avoir proposé des définitions formelles pour ces dernières. Nous conduisons ensuite une évaluation empirique pour mettre à l'épreuve nos résultats sur des jeux de données de réseaux synthétiques et réels. Dans une seconde phase, nous proposons un nouveau modèle, qui généralise un précédent modèle à composition mixée stochastique, adapté pour les réseaux pondérés et nous développons un algorithme d'inférence efficace capable de s'adapter à des réseaux de grande échelle. Relational data are ubiquitous in the nature and their accessibility has not ceased to increase in recent years. Those data, see as a whole, form a network, which can be represented by a data structure called a graph, where each vertex of the graph is an entity and each edge a connection between pair of vertices. Complex networks in general, such as the Web, communication networks or social network, are known to exhibit common structural properties that emerge through their graphs. In this work we emphasize two important properties called *homophilly* and *preferential attachment* that arise on most of the real-world networks. We firstly study a class of powerful *random graph models* in a Bayesian nonparametric setting, called *mixed-membership model* and we focus on showing whether the models in this class comply with the mentioned properties, after giving formal definitions in a probabilistic context of the latter. Furthermore, we empirically evaluate our findings on synthetic and real-world network datasets. Secondly, we propose a new model, which extends the former Stochastic Mixed-Membership Model, for weighted networks and we develop an efficient inference algorithm able to scale to large-scale networks. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |