Approche pixel de la soustraction d'arrière-plan en vidéo, basée sur un mélange de gaussiennes imprécises
Autor: | Darwich, Ali |
---|---|
Jazyk: | francouzština |
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Text |
Popis: | La détection d'objets en mouvement représente une étape très importante pour de nombreuses applications telles que l'analyse du comportement humain pour la surveillance visuelle, la reconnaissance d'action par modèle, le suivi du trafic routier, etc. La soustraction d'arrière-plan est une approche populaire, mais difficile étant donnée qu'elle doit surmonter de nombreux obstacles, comme l'évolution dynamique du fond, les variations de luminosité, les occlusions, etc. Dans les travaux présentés, nous nous sommes intéressés à ce problème de segmentation objets/fond, avec une modélisation floue de type-2 pour gérer l'imprécision du modèle et des données. La méthode proposée modélise l'état de chaque pixel à l'aide d'un modèle de mélange de gaussiennes imprécis et évolutif, qui est exploité par plusieurs classifieurs flous pour finalement estimer la classe du pixel à chaque image. Plus précisément, cette décision prend en compte l'historique de son évolution, mais aussi son voisinage spatial et ses éventuels déplacements dans les images précédentes. Puis nous avons comparé la méthode proposée avec d'autres méthodes proches, notamment des méthodes basées sur un modèle de mélanges gaussiens, des méthodes basées floues, ou de type ACP. Cette comparaison nous a permis de situer notre méthode par rapport à l'existant et de proposer quelques perspectives à ce travail. Moving objects detection is a very important step for many applications such as human behavior analysis surveillance, model-based action recognition, road traffic monitoring, etc. Background subtraction is a popular approach, but difficult given that it must overcome many obstacles, such as dynamic background changes, brightness variations, occlusions, and so on. In the presented works, we focused on this problem of objects/background segmentation, using a type-2 fuzzy modeling to manage the inaccuracy of the model and the data. The proposed method models the state of each pixel using an imprecise and scalable Gaussian mixture model, which is exploited by several fuzzy classifiers to ultimately estimate the pixel class at each image. More precisely, this decision takes into account the history of its evolution, but also its spatial neighborhood and its possible displacements in the preceding images. Then we compared the proposed method with other close methods, including methods based on a gaussian mixture model, fuzzy based methods, or ACP type methods. This comparison allowed us to assess its good performances, and to propose some perspectives to this work. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |