Simulation of noise emitted by a reactive flow
Autor: | Becerril Aguirre, Cesar |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Text |
Popis: | Le bruit émis par les nouvelles architectures de moteurs aéronautiques a été considérablement réduit dans les dernières années. Les différentes sources de bruit ont été identifiées et pour la plupart réduites. Cependant, la contribution relative du bruit de combustion au bruit global a augmenté progressivement avec la décroissance des autres sources. Deux mécanismes de génération de bruit de combustion ont été identifiés : le bruit direct qui est produit par des fluctuations du dégagement de chaleur dû à la combustion, et le bruit indirect qui est généré par l’accélération des spots d’entropie. Dans ce travail, les mécanismes de génération et propagation du bruit entropique sont étudiés par des simulations numériques aux grandes échelles (en anglais LES) et par des modèles analytiques. Dans un premier temps, une configuration simplifiée du phénomène est étudiée : des spots d’entropie sont créés par des résistances chauffantes et ensuite accélérés par une tuyère pour générer du bruit indirect. Cette configuration a été simulée et ses résultats validés par des campagnes expérimentales. Ensuite, la simulation numérique est utilisée pour mieux comprendre les mécanismes de génération du bruit indirect et ses interactions avec des effets visqueux et non visqueux. Dans une seconde partie, une configuration de turbine haute pression à un seul étage est utilisée pour étudier le bruit indirect d’une façon plus réaliste. Dans les deux parties de cette thèse, les résultats numériques sont comparés à des théories analytiques pour mieux comprendre les avantages et inconvénients d’une méthode par rapport à l’autre. Combustion noise is increasing its relative contribution to aircraft noise, while other sources are being reduced and new low-NOx emission combustion chambers being built. Two mechanisms are responsible for this noise source: direct noise in which acoustic waves are generated by the flame and propagate to the outlet of the aero-engine, and indirect noise, where entropy waves generate noise as they are accelerated and decelerated in the turbine stages. In this work, the analytical models used for the propagation of waves through non-homogeneous flows, including the generation of indirect noise, are revised and extended. In the first part, the quasi-1D case is studied, extending the analytical method to non-zero frequencies and validating the results with numerical methods and experimental data. In the second part, the 2D method for the case of compact turbine blades is studied and validated using numerical simulations of a rotating blade and of a complete turbine stage. Finally, in the third part of this thesis, these models are combined with reactive and compressible Large Eddy Simulations (LES) of combustion chambers to build a hybrid approach, named CHORUS, able to predict combustion noise. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |