Modélisation des processus bio-physico-chimiques du milieu nuageux : devenir de la matière organique
Autor: | Perroux, Hélène |
---|---|
Jazyk: | francouzština |
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Text |
Popis: | Le rôle des nuages sur la composition chimique atmosphérique est encore mal connu. Les composés chimiques présents sous forme de particules et de gaz sont transformés efficacement lors de leur passage dans le nuage par des processus photochimiques et microbiologiques. Les objectifs de ce travail de thèse étaient d’analyser l’efficacité de ces processus dans la transformation des composés chimiques à l’aide du modèle multiphasique de chimie du nuage CLEPS (CLoud Explicit Physico-chemical Scheme). Le premier travail a consisté à étudier la capacité oxydante du nuage sur la base de comparaisons entre des données expérimentales et simulées de vitesses de production du radical HO• pour des eaux nuageuses prélevées au puy de Dôme. Ces comparaisons ont montré que la photoréactivité du fer comme source de ce radical est surestimée par le modèle. Cela provient de la complexation du fer dans les échantillons naturels qui n'est pas considérée dans le modèle. Le modèle a également montré que la photolyse du peroxyde d’hydrogène représente la voie majoritaire dans la formation des radicaux HO•. Dans un second temps, les hypothèses formulées lors de la construction du nouveau mécanisme chimique en phase aqueuse CLEPS ont été validées par le biais d’expériences d’irradiation sur un composé cible, l’acide tartronique, réalisées en laboratoire et simulées avec le modèle. Le travail expérimental a confirmé la formation de l’acide glyoxylique prédite par le mécanisme en phase aqueuse du modèle. Ce dernier reproduit l’évolution temporelle des concentrations en acide tartronique et de son premier produit d’oxydation, l’acide glyoxylique mais sous-estime la formation de l’acide formique qui est un des produits finaux de l’oxydation de l’acide tartronique. Enfin, le modèle a été développé pour prendre en compte des vitesses de biodégradation mesurées en laboratoire. Le modèle permet de comparer l’efficacité des processus radicalaire et microbiologique dans la dégradation de quatre espèces chimiques en testant l’effet de paramètres environnementaux clés (température, flux actinique). L’activité biologique a été reconnue comme plus efficace dans le scénario estival que dans le cas hivernal et la contribution des microorganismes la nuit est dominante pour les deux scénarios. Un test de sensibilité a démontré que la contribution de l’activité microbienne dans la dégradation des composés chimiques est fortement accrue par rapport à la réactivité photochimique lorsque le fer est entièrement complexé. The role of clouds on the atmospheric chemical composition is still poorly known. The chemical compounds under the form of particles and gases are efficiently transformed in the cloud by photochemical and microbiological processes. The thesis objectives were to analyze the efficiency of these processes in the transformations of the chemical compounds using the multiphase cloud chemistry model CLEPS (CLoud Explicit Physico-chemical schema). The first work consisted in studying the cloud oxidizing capacity based on comparisons between HO• radical production rates for irradiated cloud water sampled at the puy de Dôme station determined experimentally in the lab data and modeled with CLEPS. These comparisons showed that the model overestimates the contribution of the iron photolysis in the production of HO• radicals. This is due to the complexation of iron in cloud water samples that is not considered in the model due to the lack of data. The model also showed that the photolysis of hydrogen peroxide represents the major source of the HO• radicals in the aqueous phase. Secondly, the new protocol for cloud aqueous phase oxidation of organic compounds developed to build the CLEPS model was validated based on irradiation experiments of a target compound, the tartronic acid that were simulated by the model. The experimental work confirmed the formation of glyoxylic acid predicted by the aqueous phase mechanism in the model. It reproduces the temporal evolution of the concentrations of tartronic acid and of its first oxidation product, the glyoxylic acid but underestimates the formation of formic acid which is one of final products of the tartronic acid oxidation. Finally, the model was developed to take into account biodegradation rates measured in the laboratory. The model allows comparing the efficiency of the chemical and microbiological processes for the degradation of four chemical species and testing the effect of key environmental parameters (temperature, actinic flow). The biological activity was recognized as more effective in the summer case than in the winter case and the contribution of microorganisms the night is dominant for both scenarios. A sensitivity test demonstrated that the contribution of the microbial activity in the degradation of the chemical compounds is strongly increased in comparison with the photochemical reactivity when the iron is supposed to be totally complexed. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |