Conception, optimisation et caractérisation d'un transistor à effet de champ haute tension en Carbure de Silicium
Autor: | Niu, Shiqin |
---|---|
Jazyk: | francouzština |
Rok vydání: | 2016 |
Předmět: |
Electronique de puissance
Interrupteur de puissance Transistor à effet de champ Transistor à effet de champ - MOSFET Transistor à effet de champ - JFET Transistor à effet de champ - SIT JFET-SiC Dessin de masque Densité de cellule Caractérisation électrique Analyse de défaillance Analyse optique des composants SIC Court-Circuit Capacité de court-Circuit Simulation électrothermique Capacité thermique du substrat Power Electronics Power switches Unipolar SiC switches - MOSFET Unipolar SiC switches - JFET Unipolar SiC switches - SIT SiC JFET design Layout Wafer test Failure analysis Short-Circuit 621.317 072 |
Druh dokumentu: | Text |
Popis: | La thèse intitulée "Conception, caractérisation et optimisation d’un transistor à effet de champ haute tension en Carbure de Silicium (SiC) et de leur diode associée", s’est déroulée au sein du laboratoire AMPERE sous la direction du Prof. D. PLANSON. Des premiers démonstrateurs de JFET ont été réalisés. Le blocage du JFET n'est pas efficace, ceci étant lié aux difficultés de réalisation technologique. Le premier travail a consisté en leur caractérisation précise puis en leur simulation, en tenant compte des erreurs de processus de fabrication. Ensuite, un nouveau masque a été dessiné en tenant en compte des problèmes technologiques identifiés. Les performances électriques de la nouvelle génération du composant ont ainsi démontré une amélioration importante au niveau de la tenue en tension. Dans le même temps, de nouveaux problèmes se sont révélés, qu’il sera nécessaire de résoudre dans le cadre de travaux futurs. Par ailleurs, les aspects de tenue en court-circuit des JFETs en SiC commercialement disponibles ont été étudiés finement. Les simulations électrothermiques par TCAD ont révélé les modes de défaillances. Ceci a permis d'établir finalement des modèles physiques valables pour les JFETs en SiC. Silicon carbide (SiC) has higher critical electric field for breakdown and lower intrinsic carrier concentration than silicon, which are very attractive for high power and high temperature power electric applications. In this thesis, a new 3.3kV/20A SiC-4H JFET is designed and fabricated for motor drive (330kW). This breakdown voltage is beyond the state of art of the commercial unipolar SiC devices. The first characterization shows that the breakdown voltage is lower (2.5kV) than its theoretical value. Also the on-state resistance is more important than expected. By means of finite element simulation the origins of the failure are identified and then verified by optical analysis. Hence, a new layout is designed followed by a new generation of SiC-4H JFET is fabricated. Test results show the 3.3kV JFET is developed successfully. Meanwhile, the electro-thermal mechanism in the SiC JFETs under short circuit is studied by means of TCAD simulation. The commercial 1200V SIT (USCi) and LV-JFET (Infineon) are used as sample. A hotspot inside the structures is observed. And the impact the bulk thickness and the canal doping on the short circuit capability of the devices are shown. The physical models validated by this study will be used on our 3.3kV once it is packaged. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |