Conception de structures sandwiches à fort pouvoir d'atténuation acoustique : 'analyse de sensibilité et optimisation'
Autor: | Baho, Omar |
---|---|
Jazyk: | francouzština |
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Text |
Popis: | L’industrie aérospatiale doit faire face à de nouvelles exigences environnementales, tout particulièrement concernant la réduction des coûts de lancement. L’utilisation de matériaux sandwichs composites plus légers permet de répondre à ces besoins. Cependant, l’allégement des matériaux sandwichs favorise une transmission importante du bruit, d’où la nécessité de prendre en compte des critères vibroacoustiques dès la phase de préconception. Dans cette optique, le travail présenté dans ce mémoire a pour objectif de proposer une démarche d’optimisation vibroacoustique des panneaux sandwichs composites légers, sous contraintes de masse et rigidité. Une étude spécifique est consacrée à l’optimisation des variables géométriques de solides cellulaires à périodicité de type nid d’abeille. L’objectif principal est de minimiser la densité modale en s’appuyant sur des modèles homogénéisés fiables. Afin de calculer les propriétés mécaniques macroscopiques des panneaux sandwichs, une méthode numérique d’homogénéisation tridimensionnelle est développée. Cette méthode permet de calculer les propriétés mécaniques équivalentes en utilisant les déformations et contraintes moyennes sur le volume représentatif. Les résultats obtenus sont conformes à ceux calculés par des méthodes classiques basées sur des modèles analytiques. Dans le but d’identifier une fonction objectif riche en informations sur le comportement vibroacoustique de panneau sandwich, on choisit d’étudier la densité modale du panneau. Par la suite, la fréquence de transition, qui sépare la zone de comportement de flexion pure du panneau sandwich du comportement en cisaillement pur de l’âme, est utilisée pour définir la fonction objectif. Après une étude d’analyse de sensibilité sur les paramètres mécaniques et géométriques de la structure sandwich, une démarche globale d’optimisation mono-objectif est mise en oeuvre pour maximiser la fréquence de transition de la structure sandwich composite constituée d’une âme en nid d’abeille hexagonale. Enfin, cette démarche est étendue pour estimer les propriétés géométriques optimales de nouvelles âmes. The aerospace industry has to adapt to new environmental requirements, especially concerning the reduction of the launch costs. The use of lighter composite sandwich materials can meet part of these requirements. However, their high stiffness-toweight ratio implies that they tend to increase noise transmission, which may be damageable to the payload. Vibroacoustic criterai should hence be taken into account from the early design stages. In this context, the work presented in this thesis aims to provide a vibroacoustic optimization approach of lightweight composite sandwich panels, under mass and stiffness constraints. A specific study is devoted to the optimization of geometric variables of periodic cellular solids such as honeycombs. The main objective is to minimize the modal density based on reliable homogenized models. In order to calculate the macroscopic mechanical properties of the sandwich panel, a numerical method of three-dimensional homogenization is developed. This method allows to calculate the equivalent mechanical properties by applying the average strains and stresses on a unit cell. The results obtained are consistent with those calculated by conventional methods based on analytical approaches. The modal density is chosen as an objective function for optimization, as it is closely related to the vibroacoustic behavior of the structure. The transition frequency, which separates the region of pure panel bending from the pure core shear zone, is further studied and considered as an alternative objective function. After a sensitivity analysis of the mechanical and geometric parameters of the sandwich structure, a mono-objective optimization approach is implemented to maximize the transition frequency of a composite sandwich structure with a hexagonal core. This approach is then extended to estimate the optimal geometric properties of new core shapes. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |