Stabilisation de dommages laser et de défauts sur composants optiques de silice par procédés laser CO2
Autor: | Doualle, Thomas |
---|---|
Jazyk: | francouzština |
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Text |
Popis: | Une des limitations du fonctionnement des grandes chaines lasers de puissance telle que le Laser MegaJoule, est la problématique de l’endommagement laser des composants optiques. Différents phénomènes physiques qui dépendent à la fois des propriétés des matériaux, de leurs conditions de fabrication/ préparation et des paramètres d’irradiation laser peuvent conduire à un amorçage de dommages sur la surface ou dans le volume, qui vont croître lors d’irradiations successives. Ce phénomène limite la montée en puissance, affecte la durée de vie des composants optiques et le coût de maintenance des chaînes laser. Il peut également être à l’origine de graves problèmes de sécurité. Pour remédier à cette croissance des dommages et augmenter la durée de vie des composants en silice, un procédé laser dit de «stabilisation » est étudié dans le cadre de cette thèse, l’objectif étant de traiter les dommages pour arrêter leur croissance sous tirs répétés afin de recycler les optiques endommagées. Ce processus consiste en une fusion, suivie d’une évaporation locale, par dépôt d’énergie localisé par un faisceau laser CO2, de la zone fracturée de silice. Nous nous sommes intéressés particulièrement à la stabilisation de dommages laser sur silice par un procédé de micro-usinage par laser CO2 dans le but de traiter des dommages de dimensions millimétriques. Cette technique est basée sur une micro-ablation rapide de la silice durant laquelle le faisceau laser est balayé à la surface du composant afin de former un cratère de forme ajustable (typiquement conique) englobant le site endommagé. Un banc d’expérimentations a ainsi été mis en place à l’Institut Fresnel pour développer et étudier ce procédé. Différents travaux numériques et expérimentaux ont également été menés pour valider et optimiser la technique. Nos travaux ont montré l’efficacité de ce procédé de micro-usinage par laser CO2 pour arrêter la croissance de dommages de plusieurs centaines de microns de largeur et de profondeur. Pour parvenir à cet objectif nous nous sommes appuyés sur la modélisation des phénomènes physiques mis en jeu lors des expériences de stabilisation en utilisant le logiciel de simulation multi-physique COMSOL. D’une part, le modèle thermique, développé au cours de cette thèse, permet de calculer la distribution de température dans le matériau pendant le tir laser avec ou sans mouvement du faisceau. Combinées à une approche thermodynamique, ces simulations thermiques permettent de décrire les transformations de la silice lors de l’irradiation afin de prédire la morphologie des cratères formés dans le verre. D’autre part, la partie mécanique du modèle permet de simuler la position et la valeur des contraintes résiduelles, générées dans le matériau autour du cratère CO2, lors de l’élévation de température suivie du refroidissement rapide. D’autres expériences concernant le traitement de fractures liées au polissage, ou des défauts de fabrication de réseaux de silice sont également traités dans ce manuscrit. One limitation of the operation of large power lasers chains such as Laser MegaJoule, is the issue of laser damage of optical components. Different physical phenomena which depend on both the properties of materials, their conditions of manufacture / preparation and laser irradiation parameters can lead to damage initiation on the surface or in the volume, which will grow under successive irradiation. This effect limits the output power, affects the lifetime of the optical components and the maintenance cost of the laser. It can also cause serious safety problems. To address this issue and increase the lifetime of fused silica components, a laser process called "stabilization" is studied in this thesis, the aim being to treat the damage sites to stop their growth under repeated pulses for recycling damaged optics. This process consists of melting, followed by local evaporation by localized energy deposition by a CO2 laser beam of the damage site. We focused particularly on the stabilization of silica components by a micromachining process using a CO2 laser in order to treat millimeter size damages. This technique is based on fast micro-ablation of the silica during which the laser beam is scanned on the component surface to form an adjustable form of crater (typically conical) including the damaged site. A bench of experiments has been set up at the Fresnel Institute to develop and study this process. Various numerical and experimental works were also conducted to validate and optimize the technique. Our work has shown the efficiency of this micro-machining process by CO2 laser to stop the growth of damage to several hundred microns wide and deep. To achieve this goal we relied on modeling of physical phenomena involved in stabilization experiments using the COMSOL Multiphysics simulation software. First, the thermal model developed in this thesis is used to calculate the temperature distribution in the material during laser irradiation with or without movement of the beam. Combined with a thermodynamic approach, these thermal simulations can describe the transformation of silica during irradiation and predict the morphology of craters formed in the glass. Secondly, the mechanical part of the model can simulate the position and value of residual stress generated in the material around the crater after the temperature rise followed by rapid cooling. Other experiments on the treatment of fractures related to polishing on silica surfaces, or manufacturing defects on silica gratings are covered in this manuscript. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |