Variabilité génétique chez la bactérie radiorésistante Deinococcus radiodurans : la recombinaison entre séquences répétées et la transformation naturelle
Autor: | Ithurbide, Solenne |
---|---|
Jazyk: | francouzština |
Rok vydání: | 2015 |
Předmět: | |
Druh dokumentu: | Obrázek |
Popis: | La bactérie Deinococcus radiodurans est connue pour sa capacité à résister à un grand nombre de traitements génotoxiques parmi lesquels on peut citer l’exposition aux rayons ionisants, aux ultra-violets, à la mitomycine C, à la dessication et au stress oxydant. Elle est capable lors d’une exposition à des doses extrêmes de rayons γ générant des centaines de cassures de l’ADN de reconstituer un génome intact en seulement 2 à 3 heures via un mécanisme original, l’ESDSA, impliquant une synthèse massive d’ADN pendant la phase de réparation des cassures de l’ADN. En plus de mécanismes efficaces de réparation de l’ADN, elle possède un kit de survie comprenant une compaction importante du nucléoïde, des mécanismes de protection des protéines contre l’oxydation, une réponse originale aux lésions de l’ADN et des protéines spécifiques induites après irradiation. Tous ces facteurs contribuent au maintien de l’intégrité du génome et à la survie de la cellule lors de l’exposition à différents agents génotoxiques. Souvent considéré comme un organisme ayant une stabilité génomique exceptionnelle, cette bactérie possède dans son génome un grand nombre de séquences répétées et des éléments mobiles et est par ailleurs naturellement compétente. Ce sont autant de facteurs pouvant participer à la variabilité génétique de cette espèce. Je me suis donc intéressée lors de ma thèse à deux processus pouvant participer à l’instabilité génétique chez D. radiodurans : la recombinaison entre séquences répétées et la transformation naturelle.L’introduction dans le génome de D. radiodurans de séquences répétées directes de 438 pb séparées par des régions d’ADN d’une longueur allant de 1479 pb à 10 500 pb m’a permis de mettre en évidence le rôle majeur joué par l’appariement simple brin (Single Strand Annealing ou SSA) impliquant la protéine DdrB, spécifique des Deinococcaceae, joue un rôle majeur dans la recombinaison « spontanée » entre les séquences répétées en absence de la recombinase RecA. L’absence de DdrB dans des souches déficientes pour la recombinaison augmente davantage la perte de viabilité observée dans ces souches ce qui suggère que le SSA participe à la prise en charge de fourches de réplication bloquées, source majeure d’instabilité génétique en absence de stress extérieur, si ces fourches ne peuvent être prise en charge par des voies impliquant des protéines de recombinaison. Je me suis également intéressée à la transformation naturelle et aux protéines impliquées dans ce processus chez D. radiodurans. J’ai pu démontrer que la protéine DprA impliquée dans la protection de l’ADN simple brin et le chargement de RecA sur l’ADN simple brin internalisé lors de la transformation de nombreuses espèces comme Streptococcus pneumoniae, Bacillus subtilis ou Helicobacter pylori, est également impliquée dans la transformation chez D. radiodurans. J’ai pu montrer également qu’en plus de jouer un rôle majeur dans la transformation par de l’ADN plasmidique, DdrB est impliquée dans la transformation par de l’ADN génomique si la protéine DprA est absente. The bacterium Deinococcus radiodurans is known for its ability to withstand a large number of genotoxic treatments, including exposure to ionizing or ultraviolet radiation, mitomycin C, desiccation, and oxidative stress. It is able, upon exposure to extreme doses of γ-radiation generating hundreds of DNA breaks, to reconstitute an intact genome in only 2 to 3 hours via an ESDSA mechanism, involving massive DNA synthesis during DNA double strand break repair. Together with efficient DNA repair mechanisms, D. radiodurans possesses a survival kit comprising significant compaction of its nucleoid, protection mechanisms against protein oxidation, an original response to DNA damage and specific proteins induced after irradiation. All of these contribute to the maintenance of genomic integrity and cell survival upon exposure to various genotoxic agents. In spite of the idea that D. radiodurans is an organism with outstanding genomic stability, this bacterium has in its genome a large number of repeat sequences and mobile elements and is also naturally competent. All these factors contribute to the genetic variability of species. I was interested in two processes that can play a role in genetic variability in D. radiodurans: recombination between repeated sequences and natural transformation.The introduction, into the genome of D. radiodurans, of 438 bp direct repeated sequences separated by DNA regions ranging from 1,479 bp to 10,500 bp in length allowed me to demonstrate the major role of Single Strand Annealing (SSA) involving the DdrB protein specific for Deinococcaceae, in the "spontaneous" recombination between the repeated sequences in the absence of the RecA recombinase. The absence of DdrB in strains deficient for recombination further increased the loss of viability observed in these strains, suggesting that SSA is required for the management of blocked replication forks, a major source of genetic instability in the absence of external stress when these forks cannot be rescued by pathways involving recombination proteins.I was also interested in the natural transformation and proteins involved in this process in D. radiodurans. I demonstrated that DprA protein involved in DNA single strand protection and loading of RecA on single-stranded DNA internalized during transformation of many species such as Streptococcus pneumoniae, Helicobacter pylori, or Bacillus subtilis, is also involved in this process in D. radiodurans. I also showed that, in addition to playing a major role in transformation by plasmid DNA, DdrB is also involved in transformation by genomic DNA of cells devoid of the DprA protein. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |