Higher-order languages : dualities and bisimulation enhancements

Autor: Madiot, Jean-Marie
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Druh dokumentu: Text
Popis: Les comportements des processus concurrents peuvent être exprimés en utilisant des calculs de processus, des langages formels simples qui permettent de démontrer des résultats mathématiques précis sur les interactions entre processus. Un exemple très simple est CCS, un autre exemple est le pi-calcul, plus expressif grâce à un mécanisme de communication de canaux. Dans ce dernier, on peut instaurer un système de types (pour raffiner l'analyse aux environnements plus contraints) et encoder le lambda-calcul (qui représente les calculs séquentiels).Certains de ces calculs, comme CCS ou des variantes du pi-calcul comme les calculs de fusions, ont une certaine propriété de symétrie. On utilise dans un premier temps cette symétrie comme un outil, pour prouver que deux encodages du lambda-calcul dans le pi-calcul sont en fait équivalents.Cette preuve nécessitant un système de types et une forme de symétrie, on se pose la question de l'existence d'un système de types pour les autres calculs symétriques, notamment les calculs de fusion, à laquelle on répond par la négative avec un théorème d'impossibilité.En analysant ce théorème, on découvre un contrainte fondamentale de ces calculs qui empêche l'utilisation des types, à savoir la présence d'une notion de relation d'équivalence entre les canaux de communication. Le relâchement de cette contrainte pour obtenir une relation de pré-ordre engendre un calcul intéressant qui recouvre des notions importantes du pi-calcul, absentes dans les calculs de fusion : les types et les noms privés. La première partie de la thèse se concentre sur l'étude de ce calcul.La deuxième partie de la thèse se concentre sur la bisimulation, une méthode pour établir l'équivalence de deux agents dans des langages d'ordre supérieur, par exemple le pi-calcul ou le lambda-calcul. Une amélioration de cette méthode est la théorie des techniques modulo, très puissante, mais qui malheureusement s'applique uniquement aux systèmes de premier ordre, comme les automates ou CCS.Cette thèse s'applique alors à décrire les langages d'ordre supérieur en tant que systèmes du premier ordre. On récupère ainsi la théorie générale des techniques modulo pour ces langages, en prouvant correctes la correspondance induite et les techniques spécifiques à chaque langage. On détaille les tenants et aboutissants de cette approche, pour fournir les outils nécessaires à son utilisation pour d'autres langages d'ordre supérieur.
The behaviours of concurrent processes can be expressed using process calculi, which are simple formal languages that let us establish precise mathematical results on the behaviours and interactions between processes. A very simple example is CCS, another one is the pi-calculus, which is more expressive thanks to a name-passing mechanism. The pi-calculus supports the addition of type systems (to refine the analysis to more subtle environments) and the encoding of the lambda-calculus (which represents sequential computations).Some of these calculi, like CCS or variants of the pi-calculus such as fusion calculi, enjoy a property of symmetry. First, we use this symmetry as a tool to prove that two encodings of the lambda-calculus in the pi-calculus are in fact equivalent.This proof using a type system and a form of symmetry, we wonder if other existing symmetric calculi can support the addition of type systems. We answer negatively to this question with an impossibility theorem.Investigating this theorem leads us to a fundamental constraint of these calculi that forbids types: they induce an equivalence relation on names. Relaxing this constraint to make it a preorder relation yields another calculus that recovers important notions of the pi-calculus, that fusion calculi do not satisfy: the notions of types and of privacy of names. The first part of this thesis focuses on the study of this calculus, a pi-calculus with preorders on names.The second part of this thesis focuses on bisimulation, a proof method for equivalence of agents in higher-order languages, like the pi- or the lambda-calculi. An enhancement of this method is the powerful theory of bisimulations up to, which unfortunately only applies for first-order systems, like automata or CCS.We then proceed to describe higher-order languages as first-order systems. This way, we inherit the general theory of up-to techniques for these languages, by proving correct the translations and up-to techniques that are specific to each language. We give details on the approach, to provide the necessary tools for future applications of this method to other higher-order languages.
Databáze: Networked Digital Library of Theses & Dissertations