Développement de l'épitaxie par jets moléculaires pour la croissance d'oxydes fonctionnels sur semiconducteurs
Autor: | Louahadj, Lamis |
---|---|
Jazyk: | francouzština |
Rok vydání: | 2014 |
Předmět: | |
Druh dokumentu: | Text |
Popis: | Le développement de l’industrie microélectronique a été jusqu’à récemment essentiellement basé sur une augmentation régulière des performances des composants liée à une réduction toujours plus poussée de leurs dimensions dans la continuité de la loi de Moore. Cette évolution se heurte cependant aux limitations intrinsèques des propriétés physiques du couple silicium-silice sur lesquelles elle repose. La diversification des matériaux intégrés sur Si devient ainsi un enjeu majeur du développement de cette industrie. Dans ce contexte, les oxydes dits fonctionnels forment une famille de matériaux particulièrement intéressante : leurs propriétés physiques (ferroélectricité, ferromagnétisme, diélectricité, piézoélectricité, effet Pockels fort) ainsi que la possibilité de les combiner sous forme d’hétérostructures par épitaxie ouvrent la voie à la fabrication de composants innovants et ultraperformants pour des applications dans les domaines de la micro et de l’optoélectronique, de la spintronique, des micro-ondes et des MEMS. Ces oxydes, et plus spécifiquement ceux appartenant à la famille des pérovskites, sont classiquement épitaxiés par ablation laser (PLD), pulvérisation cathodique ou dépôt de vapeur chimique (CVD) sur des substrats de SrTiO3 (STO). Cependant, ces substrats sont inadaptés aux applications industrielles du fait de leur taille limitée au cm2 et de leur qualité structurale médiocre. Par ailleurs, définir une stratégie pour intégrer ces matériaux sur Si est indispensable pour le développement d’une filière susceptible d’avoir des débouchés applicatifs. Dans ce contexte, l’utilisation de l’épitaxie par jets moléculaires (l’EJM) pour la croissance de ces oxydes est particulièrement pertinente, puisque cette technique permet de fabriquer des couches minces monocristallines de STO sur Si et sur GaAs, ce qui ouvre la voie à l’intégration d’oxydes fonctionnels sur ces substrats via des templates de STO. Cependant, l’EJM est une technique peu mature pour la croissance des oxydes fonctionnels, et doit donc être développée pour cet objectif. C’est le but de ce travail de thèse, financé par un contrat CIFRE avec la société RIBER, équipementier pour l’épitaxie par jets moléculaires, et entrant dans le cadre d’un laboratoire commun entre RIBER et l’INL pour le développement de l’EJM d’oxydes fonctionnels. Nous présentons tout d’abord les développements techniques que nous avons menés autour d’un réacteur EJM « oxydes » prototype. Nous montrons notamment comment nous avons pu améliorer la fiabilité des sources d’oxygène, Sr, Ba et Ti nécessaires à l’épitaxie de matériaux clés que sont le STO et le BaTiO3 ferroélectrique. Nous montrons ensuite comment ces développements techniques nous ont permis de mieux comprendre et mieux maîtriser la croissance de templates de STO sur Si, et en particulier que la cristallisation du STO, initialement amorphe sur Si, est catalysée par un excès de Sr aux premiers stades de la croissance. Nous montrons comment il est possible de contrôler cet excès de Sr pour qu’il ne détériore pas la qualité des couches minces, et nous proposons d’une manière plus générale une étude de l’influence de la stoechiométrie de l’alliage sur ses propriétés structurales. Nous montrons également comment l’utilisation de notre source d’oxygène à plasma permet d’obtenir une oxydation satisfaisante des couches minces d’oxyde. Nous donnons enfin quelques exemples d’intégration sur Si d’oxydes fonctionnels (PZT piézoélectrique, BaTiO3 ferroélectrique) réalisés sur des templates de STO/Si. Nous avons enfin initié l’étude de la croissance par EJM de STO sur des substrats de GaAs et enfin, réaliser la première démonstration d’intégration de PZT ferroélectrique monocristallin sur GaAs. The development of microelectronics industry has been, until recently, essentially based on the regular improvement of device performances thanks to the downscaling strategy as a continuity of Moore’s law. This evolution is now confronted to the intrinsic physical properties limitations of the material used in the silicon industry (Si and SiO2). Integrating different materials on silicon thus becomes a major challenge of industry development. In this context, functional oxides form a very interesting family of materials: their physical properties (ferroelectricity, ferromagnetism, piezoelectricity, strong Pockels effect) and the possibility to combine them (heterostructures) by epitaxy opens a way for fabricating innovating and high-performance components for applications in micro and optoelectronic, spintronic, micro-waves and MEMs… These oxides and specifically those belonging to the perovskite family are classicaly grown by Laser Ablation (PLD), sputtering or by chemical vapour deposition (CVD) on STO substrates. These substrates are inappropriate for industry applications due to their limited size (1cm²) and their relatively bad structural quality. On the other hand, defining a strategy for integrating these materials on silicon is essential for future applications. In this context, using molecular beam epitaxy (MBE) for the growth of oxides is particularly relevant since this technique allows fabricating monocristalline thin films of STO on Silicon and on GaAs, which open the way of integrating other functional oxides on this substrates via templates of STO. However, MBE is not a mature technique for functional oxides growth. The purpose of this PhD work, financed by a CIFRE contract with the RIBER Company, equipment manifacturer for molecular beam epitaxy, is to develop the growth of functional oxides by MBE. It enters into the framework of a joint laboratory signed between RIBER and INL In this work, we first present technical development performed on a prototype MBE reactor dedicated to oxide growth. We show by then how these technical developments allow a better understanding and control of the growth of STO on Si templates, in particular the crystallisation of initially amorphous STO on Silicon, which is catalysed by an excess of Sr at the first stage of the growth. We demonstrate how it is possible to control this Sr excess so that it does not affect the film quality. We propose a study of the effect of STO cationic stoechiometry on the structural properties. We also show how the use of a conveniently designed oxygen plasma source allows for obtaining good oxidation of the oxide thin films. Finally, we detail a few examples of integration of functional oxides (piezoelectric PZT, ferroelectric BTO) on templates STO/Si. We have also studied the growth of STO on GaAs substrates by MBE and we demonstrate the first integration of monocristalline ferroelectric PZT on GaAs. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |