Caractérisation expérimentale et théorique des écoulements entraînés par ultrasons. Perspectives d'utilisation dans les procédés de solidification du Silicium Photovoltaïque

Autor: Moudjed, Brahim
Jazyk: francouzština
Rok vydání: 2013
Předmět:
Druh dokumentu: Text
Popis: La présente étude s'intéresse à un écoulement d'acoustic streaming, c'est-à-dire un écoulement généré par la propagation d'une onde acoustique dans un fluide. Le travail consiste à comparer deux approches: expérimentale et numérique. Les ultrasons sont émis à 2MHz par un transducteur piézo-électrique de 28.5mm de diamètre. Ce dernier est plongé dans une cuve d'eau équipée de deux parois absorbantes: l'une sert à séparer le champ proche du champ lointain et l'autre est placée à l'extrémité du domaine fluide afin d'éviter toutes réflexions. On réalise ainsi une étude en champ proche et une étude en champ lointain. Les mesures sont de deux types: champ de pression acoustique (hydrophone) et champ de vitesse (PIV). En parallèle, on effectue des simulations numériques directes avec le logiciel StarCCM+TM. Il s'agit de résoudre les équations de Navier-Stokes en fluide incompressible complétées d'un terme source de force acoustique. L'expression de ce dernier est obtenue par séparation des échelles de temps, ce qui consiste à négliger à l'échelle de temps acoustique les variations temporelles lentes, de l'écoulement généré. La démarche est ensuite analogue à celle utilisé en turbulence pour le calcul des tenseurs de Reynolds. On obtient finalement un bon accord entre les résultats expérimentaux et ceux de la modélisation numérique.
Acoustic streaming, i.e. the flow induced by a propagating acoustic wave, is investigated here with both experiental and numerical approaches. The ultrasound source is a 2MHz transducer with a 29mm diameter. The transducer is introduced inside a water tank with two absorbing walls. An intermediate absorbing wall is used to separate the near field from the far field. An other absorbing wall is placed in the opposite side to teh source to avoid reflective waves. Both near field and far field are studied. The measurements concern the acoustic pressure field (hydrophone) and the velocity field (PIV). Numerical simulations are also performed with the software STARCCM+TM. They solve the incompressible Navier-Stokes equations with an acoustic force source term. Ths term is obtained by time scale separation: the slow variations of the flow are neglected on an acoustic time scale with regard to the fast variations of the acoustic field. The procedure is then similar to that used in turbulence for Reynolds stress calculation. A good agreement is eventually obtained between the experimental and numerical results.
Databáze: Networked Digital Library of Theses & Dissertations