Aspects hors de l'équilibre de systèmes quantiques unidimensionnels fortement corrélés
Autor: | Collura, Mario |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
Mécanique quantique
Phénomènes critiques quantiques Transitions de phase quantiques Théorie d'échelle Dynamique adiabatique Mécanisme de Kibble-Zurek Densité de défauts Modèle XY quantique Modèle de Bose-Hubbard Intrication quantique Entropie Bosons ultra-froids Oscillations de Bloch Auto-piégeage Thermalisation quantique Profil de température quantique Quantum mechanics Quantum critical phenomena Quantum phase transitions Scaling theory Adiabatic dynamics Kibble-Zurek mechanism Defect density Quantum XY model Quantum Bose-Hubbard model Entanglement Entropy Ultra-cold bosons Bloch oscillations Self-trapping Quantum thermalization Quantum temperature profile 535.15 530.41 530.12 |
Druh dokumentu: | Text |
Popis: | Dans cette thèse, nous avons répondu à certaines questions ouverts dans le domaine de la dynamique hors équilibre des systèmes quantiques unidimensionnels fermés. Durant ces dernières années, les avancées dans les techniques expérimentales ont revitalisé la recherche théorique en physique de la matière condensée et dans l'optique quantique. Nous avons traité trois sujets différents et en utilisant des techniques à la fois numériques et analytiques. Dans le cadre des techniques numériques, nous avons utilisé des méthodes de diagonalisation exacte, l'algorithme du groupe de renormalisation de la matrice densité en fonction du temps (t-DMRG) et l'algorithme de Lanczos. Au début, nous avons étudié la dynamique quantique adiabatique d'un système quantique près d'un point critique. Nous avons démontré que la présence d'un potentiel de confinement modifie fortement les propriétés d'échelle de la dynamique des observables en proximité du point critique quantique. La densité d'excitations moyenne et l'excès d'énergie, après le croisement du point critique, suivent une loi algébrique en fonction de la vitesse de la trempe avec un exposant qui dépend des propriétés spatio-temporelles du potentiel. Ensuite, nous avons étudié le comportement de bosons ultra-froids dans un réseau optique incliné. En commençant par l'hamiltonien de Bose-Hubbard, dans la limite de Hard-Core bosons, nous avons développé une théorie hydrodynamique qui reproduit exactement l'évolution temporelle d'une partie des observables du système. En particulier, nous avons observé qu'une partie de bosons reste piégée, et oscille avec une fréquence qui dépend de la pente du potentiel, au contraire, une autre partie est expulsée hors de la rampe. Nous avons également analysé la dynamique du modèle de Bose-Hubbard en utilisant l'algorithme t-DMRG et l'algorithme de Lanczos. De cette façon, nous avons mis en évidence le rôle de la non-intégrabilité du modèle dans son comportement dynamique. Enfin, nous avons abordé le problème de la thermalisation dans un système quantique étendu. À partir de considérations générales, nous avons introduit la notion de profil de température hors équilibre dans une chaîne des bosons à coeur dure. Nous avons analysé la dynamique du profil de temperature et, notamment, ses propriétés d'échelle In this thesis we have addressed some open questions on the out-of-equilibrium dynamics of closed one-dimensional quantum systems. In recent years, advances in experimental techniques have revitalized the theoretical research in condensed matter physics and quantum optics. We have treated three different subjects using both numerical and analytical techniques. As far as the numerical techniques are concerned, we have used essentially exact diagonalization methods, the adaptive time-dependent density-matrix renormalization-group algorithm (t-DMRG) and the Lanczos algorithm. At first, we studied the adiabatic quantum dynamics of a quantum system close to a critical point. We have demonstrated that the presence of a confining potential strongly affects the scaling properties of the dynamical observables near the quantum critical point. The mean excitation density and the energy excess, after the crossing of the critical point, follow an algebraic law as a function of the sweeping rate with an exponent that depends on the space-time properties of the potential. After that, we have studied the behavior of ultra-cold bosons in a tilted optical lattice. Starting with the Bose-Hubbard Hamiltonian, in the limit of Hard-Core bosons, we have developed a hydrodynamic theory that exactly reproduces the temporal evolution of some of the observables of the system. In particular, it was observed that part of the boson density remains trapped, and oscillates with a frequency that depends on the slope of the potential, whereas the remaining packet part is expelled out of the ramp. We have also analyzed the dynamics of the Bose-Hubbard model using the tDMRG algorithm and the Lanczos algorithm. In this way we have highlighted the role of the non-integrability of the model on its dynamical behavior. Finally, we have addressed the issue of thermalization in an extended quantum system. Starting from quite general considerations, we have introduced the notion of out-of-equilibrium temperature profile in a chain of Hard-Core bosons. We have analyzed the dynamics of the temperature profile and especially its scaling properties |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |