Inégalités de von Neumann sous contraintes, image numérique de rang supérieur et applications à l'analyse harmonique
Autor: | Gaaya, Haykel |
---|---|
Jazyk: | francouzština |
Rok vydání: | 2011 |
Předmět: |
Inégalités de von Neumann
Shift tronqué Rayon numérique Matrices de Toeplitz Image numérique de rang supérieur Théorie des opérateurs Propriété de Poncelet Von Neumann inequalities Compression shift Numerical radius Toeplitz matrices Higher rank numerical range Operator theory Poncelet property 512.556 |
Druh dokumentu: | Text |
Popis: | Cette thèse s’inscrit dans le domaine de la théorie des opérateurs. L’un des opérateurs qui m’a particulièrement intéressé est l’opérateur modèle noté S(Φ) qui désigne la compression du shift unilatéral S sur l’espace modèle H(Φ) où Φ est une fonction intérieure. L’étude du rayon numérique de S(Φ) semble être importante comme l’illustre bien un résultat dû à C. Badea et G. Cassier qui ont montré qu’il existe un lien entre le rayon numérique de tels opérateurs et l’estimation des coefficients des fractions rationnelles positives sur le tore. Nous fournissons une extension de leur résultat et nous trouvons une expression explicite du rayon numérique de S(Φ) dans le cas particulier où Φ est un produit de Blaschke fini avec un unique zéro. Dans le cas général où Φ est un produit de Blaschke fini quelconque, une estimation du rayon numérique de S(Φ) est aussi donnée. Dans la deuxième partie de cette thèse on s’est intéressé à l’image numérique de rang supérieur Λk(T) qui est l’ensemble de tous les nombres complexes λ vérifiant PTP = λP pour une certaine projection orthogonale P de rang k. Cette notion a été introduite récemment par M.-D. Choi, D. W. Kribs, et K. Zyczkowski et elle est utilisée pour certains problèmes en physique. On montre que l’image numérique de rang supérieur du shift n-dimensionnel coïncide avec un disque de rayon bien déterminé This thesis joins in the field of operator theory. We are specially interested by the extremal operator S(Φ) defined by the compression of the unilateral shift S to the model subspace H(Φ) where Φ is an inner function on the unit disc. The numerical radius of S(Φ) seems to be important and have many applications to harmonic analysis. C. Badea and G. Cassier showed that there is a relationship between the numerical radius of such operators and the Taylor coefficients of positive rational functions. We give an extension of C. Badea and G. Cassier result and an explicit formula of the numerical radius of S(Φ) in the particular case where Φ is a finite Blaschke product with unique zero. An estimate in the general case is also established. The second part is devoted to the study of the higher rank-k numerical range denoted by Λk(T) which is the set of all complex number λ satisfying PTP = λP for some rank-k orthogonal projection P. This notion was introduced by M.-D. Choi, D. W. Kribs, et K. Zyczkowski motivated by a problem in Physics. We show that if Sn is the n-dimensional shift then its rank-k numerical range is the circular discentered in zero and with a precise radius |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |