Instrumentation immergée des matériaux cimentaires par des micro-transducteurs ultrasoniques à nanotubes de carbone : perspectives pour le contrôle non destructif in-situ de durabilité
Autor: | Lebental, Bérengère |
---|---|
Jazyk: | francouzština |
Rok vydání: | 2010 |
Předmět: | |
Druh dokumentu: | Text |
Popis: | Le contrôle non destructif in-situ de durabilité des matériaux cimentaires est essentiel à la prédiction et la prévention des défauts de fonctionnement des constructions. Alors que les dégradations, et donc la perte de durabilité, des matériaux cimentaires sont déclenchées et contrôlées par les caractéristiques et les évolutions de leur microporosité, il n'existe pas à notre connaissance de méthode non destructive d'instrumentation in-situ de la microporosité elle-même. Nous proposons un concept innovant d'évaluation de la durabilité des matériaux cimentaires fondé sur l'instrumentation in-situ de leur microstructure. La méthode repose sur l'investigation ultrasonore haute fréquence de micropores individuels au moyen de micro-transducteurs ultrasoniques capacitifs (μ-cMUT) immergés en grand nombre dans le matériau. Le dispositif proposé pour répondre aux multiples contraintes applicatives et technologiques est un μ-cMUT dont la plaque vibrante est constituée d'une couche mince de nanotubes de carbone monoparoi densément alignés. Nous avons traité la question de la pertinence de ce principe d'instrumentation en modélisant par un problème élasto-acoustique microfluidique l'interaction entre la plaque vibrante d'un μ-cMUT et le fluide, air ou eau, contenu dans un pore de taille micrométrique. La spécificité du modèle réside dans la prise en compte du comportement dissipatif du fluide. La résolution de ce problème couplé a nécessité le développement d'une méthode numérique ad-hoc. Nous avons constaté numériquement que la dissipation cause une diminution des fréquences de résonance. La couche limite a une épaisseur importante par rapport à la taille du domaine. Les amplitudes de vibration des plaques sont particulièrement sensibles au contenu des pores et à la géométrie des pores remplis d'eau. Nous en avons déduit que les μ-cMUT proposés pourraient être pertinents dans les matériaux cimentaires pour le suivi de l'hydratation, pour la détection des dégradations et le suivi de leur évolution. Pour étudier la faisabilité d'un μ-cMUT à nanotubes opérationnel à haute fréquence dans l'air et l'eau, nous avons tout d'abord réalisé par diélectrophorèse des dépôts denses et minces de nanotubes bien alignés. Un des dépôts est monocouche, ce qui constitue une performance remarquable pour un dépôt par diélectrophorèse. Nous avons ensuite suspendu les nanotubes, obtenant ainsi des membranes rigides et longues. L'épaisseur de ces membranes suspendues est particulièrement faible et leur facteur de forme particulièrement élevé par rapport à l'état de l'art des cMUT. Nous avons enfin montré par vibrométrie laser que les membranes vibrent à basse fréquence avec des amplitudes atteignant 5 nm pic-à-pic. Il s'agit à notre connaissance de la première mise en évidence de vibrations de nanotubes de carbone monoparoi par vibrométrie laser. Ces résultats démontrent une brique de base essentielle de l'étude complète de faisabilité du dispositif imaginé. Ils indiquent aussi la faisabilité à court terme de microdétecteurs d'air pour le suivi de la microporosité gazeuse des matériaux cimentaires. En regroupant ainsi une étude numérique de pertinence et une étude technologique de faisabilité, la thèse constitue une contribution significative à la mise au point d'une nouvelle méthode de suivi de durabilité de matériaux cimentaires fondé sur l'immersion au coeur du matériau d'un grand nombre de microcapteurs intégrant des nanotechnologies In-situ non-destructive testing of durability in cementitious materials is essential to the early prediction and prevention of structural failures. Whereas degradations in cementitious materials, and henceforth durability loss, are brought about and controlled by the characteristics and evolutions of microporosity, there isn't to our knowledge any method for the in-situ non-destructive testing of microporosity itself. To evaluate in-situ the durability of cementitious materials, we put forward an innovative concept based on in-situ instrumentation of their microstructure. Individual micropores are to be probed by high-frequency ultrasonic waves generated and detected by capacitive ultrasonic microtransducers (μ-cMUT) embedded in large number within the material. The vibrating plate of the μ-cMUT devices is to be made of a thin layer of densely aligned single-walled carbon nanotubes, in order for the devices to satisfy the applicative and technological requirements. Relevance of this instrumentation method has been studied : we have used an elasto-acoustical model to describe the interaction between the vibrating plate of a μ-cMUT device and the fluid (water or air) filling a pore of micrometric size. The specificity of this model lies in the integration of fluid viscosity. It has required us to develop ad-hoc solving techniques. We have found out numerically that in this problem dissipation leads to a decrease in resonance frequency compared to non-visquous acoustics. The boundary layer is large compared to the domain size. The vibration amplitudes of the plate are very sensitive to pore content and to water-filled pore geometry. We have deduced from these results that the μ-cMUT devices we envision may be relevant to study hydration and to monitor degradations in cementitious materials. Feasibility of a high-frequency, nanotubes-based μ-cMUT device operating in water or air has also be evaluated : using first a dielectrophoretic deposition technique, we have made thin, dense membranes of well-aligned nanotubes. One of our deposition reaches mono-layer thickness, which is remarkable for dielectrophoretic depositions. We have suspended the nanotubes, thus obtaining long and rigid membranes. They are very thin and have a high form factor compared to state-of-the-art cMUT devices. Finally, we have used laser vibrometry to observe membrane vibrations. Membrane vibration amplitudes reach 5 nm at low frequency. As far as we know, it is the first time vibrations of carbon nanotubes have been successfully observed with laser vibrometry. These results prove that we have overcome one of the most significant technological bottle-neck of the whole feasibility study. Moreover, they indicate short-term feasibility of air microdetectors that could be valuably employed to monitor gaseous microporosity in cementitious materials. By associating a numerical study on relevance and a technological study on feasibility, this work contributes significantly to the development of a new durability monitoring method for cementitious materials. Central to this method is the use of a large number of embedded microsensors integrating nanotechnologies |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |