Local Cohomology of Determinantal Thickening and Properties of Ideals of Minors of Generalized Diagonal Matrices.

Autor: Hunter Simper (15347248)
Předmět:
Druh dokumentu: Diplomová práce
DOI: 10.25394/pgs.22687264.v1
Popis: This thesis is focused on determinantal rings in 2 different contexts. In Chapter 3 the homological properties of powers of determinantal ideals are studied. In particular the focus is on local cohomology of determinantal thickenings and we explicitly describe the $R$-module structure of some of these local cohomology modules. In Chapter 4 we introduce \textit{generalized diagonal} matrices, a class of sparse matrices which contain diagonal and upper triangular matrices. We study the ideals of minors of such matrices and describe their properties such as height, multiplicity, and Cohen-Macaulayness.
Databáze: Networked Digital Library of Theses & Dissertations