[en] DIMENSIONLESS ENSEMBLE SMOOTHER WITH MULTIPLE DATA ASSIMILATION APPLIED ON AN INVERSE PROBLEM OF A MULTILAYER RESERVOIR WITH A DAMAGED ZONE

Autor: ADAILTON JOSE DO NASCIMENTO SOUSA
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Druh dokumentu: TEXTO
DOI: 10.17771/PUCRio.acad.61465
Popis: [pt] O ES-MDA tem sido usado amplamente no que diz respeito a problemas inversos de reservatórios de petróleo, usando a estatística bayesiana como cerne. Propriedades importantes como a permeabilidade, raio da zona de skin e permeabilidade da zona de skin, são estimadas a partir de dados de histórico de reservatório usando esse método baseado em conjuntos. Nessa tese, a pressão medida no poço durante um teste de injetividade foi calculada usando uma abordagem analítica de um reservatório multicamadas, com zona de skin, usando a Transformada de Laplace. O algoritmo de Stehfest foi usado para inverter os dados para o campo real. Além disso, ao usarmos essa abordagem, conseguimos obter facilmente a vazão em cada camada como um novo dado a ser considerado no ES-MDA, enriquecendo a estimativa dos dados desejados. Por usarmos a vazão e a pressão como dados de entrada no ES-MDA, é de suma importância que a diferença de ordens de grandezas não influencie em nossas estimativas e por isso optou-se por usar o ES-MDA na forma adimensional. Visando uma maior precisão de nossas estimativas, usou-se um algoritmo de otimização dos fatores de inflação do ES-MDA.
[en] The ES-MDA has been extensively used concerning inverse problems of oil reservoirs, using Bayesian statistics as the core. Important properties such as permeability, skin zone radius, and skin zone permeability are estimated from historical reservoir data using this set-based method. In this thesis, the pressure measured at the well during an injectivity test was calculated using an analytical approach of a multilayer reservoir, with skin zone, using the Laplace Transform. Stehfest s algorithm was used to invert the data to the real field. Furthermore, using this approach, we were able to easily obtain the flow rate in each layer as new data to be considered in the ES-MDA, enriching the estimation of the targeted data. As we use flow rate and pressure as input data in the ES-MDA, it is important to assure that the difference in orders of magnitude does not influence our estimates. For this reason, we chose to use the ES-MDA in the dimensionless form. Aiming at a greater precision of our estimates, we used an algorithm to optimize the ES-MDA inflation factors.
Databáze: Networked Digital Library of Theses & Dissertations