[en] ON INTERVAL TYPE-2 FUZZY LOGIC SYSTEM USING THE UPPER AND LOWER METHOD FOR SUPERVISED CLASSIFICATION PROBLEMS

Autor: RENAN PIAZZAROLI FINOTTI AMARAL
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Druh dokumentu: TEXTO
DOI: 10.17771/PUCRio.acad.55169
Popis: [pt] Os sistemas de inferência fuzzy são técnicas de aprendizado de máquina que possuem a capacidade de modelar incertezas matematicamente. Eles são divididos em sistemas de inferências fuzzy tipo-1 e fuzzy tipo-2. O sistema de inferência fuzzy tipo-1 vem sendo amplamente aplicado na solução de diversos problemas referentes ao aprendizado de máquina, tais como, controle, classificação, clusterização, previsão, dentre outros. No entanto, por apresentar uma melhor modelagem matemática das incertezas, o sistema de inferência fuzzy tipo-2 vem ganhando destaque ao longo dos anos. Esta melhora modelagem vem também acompanhada de um aumento do esforço matemático e computacional. Visando reduzir tais pontos para solucionar problemas de classificação, este trabalho apresenta o desenvolvimento e a comparação de duas funções de pertinência Gaussiana para um sistema de inferência fuzzy tipo-2 intervalar usando o método superior e inferior. São utilizadas as funções de pertinência Gaussiana com incerteza na média e com incerteza no desvio padrão. Ambos os modelos fuzzy abordados neste trabalho são treinados por algoritmos baseados em informações de primeira ordem. Além disso, este trabalho propõe a extensão dos modelos fuzzy tipo-2 intervalar para apresentarem múltiplas saídas, reduzindo significativamente o custo computacional na solução de problemas de classificação multiclasse. Finalmente, visando contextualizar a utilização desses modelos em aplicações de engenharia mecânica, este trabalho apresenta a solução de um problema de detecção de falhas em turbinas a gás, utilizadas em aeronaves.
[en] Fuzzy logic systems are machine learning techniques that can model mathematically uncertainties. They are divided into type-1 fuzzy, and type-2 fuzzy logic systems. The type-1 fuzzy logic system has been widely applied to solve several problems related to machine learning, such as control, classification, clustering, prediction, among others. However, as it presents a better mathematical modeling of uncertainties, the type-2 fuzzy logic system has received much attention over the years. This modeling improvement is also accompanied by an increase in mathematical and computational effort. Aiming to reduce these issues to solve classification problems, this work presents the development and comparison of two Gaussian membership functions for a type-2 interval fuzzy logic system using the upper and lower method. Gaussian membership functions with uncertainty in the mean and with uncertainty in the standard deviation are used. Both fuzzy models covered in this work are trained by algorithms based on first order information. Furthermore, this work proposes the extension of interval type-2 fuzzy models to present multiple outputs, significantly reducing the computational cost in solving multiclass classification problems. Finally, aiming to contextualize the use of these models in mechanical engineering applications, this work presents the solution of a problem of fault detection in aircraft gas turbines.
Databáze: Networked Digital Library of Theses & Dissertations