[pt] OTIMIZAÇÃO DE PORTFÓLIO ROBUSTA SOB VISÕES CONFLITANTES: UMA ABORDAGEM BLACK-LITTERMAN

Autor: DIMAS LEAO RAMOS
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Druh dokumentu: TEXTO
DOI: 10.17771/PUCRio.acad.45680
Popis: [pt] Black e Litterman propuseram um modelo de otimização de portfólio que combina visões do investidor sobre retornos esperados de ativos com o equilíbrio neutro de mercado. No entanto, especificar visões sobre uma carteira de investimentos é uma tarefa difícil, especialmente quando os investidores têm opiniões conflitantes sobre o mesmo ativo. Neste trabalho, é proposto uma nova formulação para otimização de carteiras, que é robusta diferentes à visões do investidor. A nossa abordagem foi testada em dados sintéticos e dados reais disponíveis em uma plataforma do Banco Central do Brasil. Esta plataforma consolida projeções macroeconômicas de mais de uma centena de analistas profissionais e disponibiliza para o mercado numa base semanal. Por fim, é comparado o desempenho desta formulação robusta com o modelo Black-Litterman tradicional frequentemente utilizado na indústria financeira. Os resultados mostram que a metodologia robusta pode providenciar melhor desempenho ajustado ao risco em comparação com o modelo orignial e são menos sensíveis às visões do investor.
[en] Black and Litterman proposed a portfolio optimization model that combines investor s views on future asset s returns with neutral market equilibrium. However, specifying portfolio views is a challenging task, specially when investors have conflicting opinions on the same asset. In this thesis, we suggest a new portfolio optimization formulation that is robust for investor s views. Our approach was tested on synthetic and real data available on a framework developed by Central Bank of Brazil. This online framework collects projections on main macroeconomics variables from more than a hundred professional forecasters and provides public online access on a weekly basis. The performance of this new robust formulation is compared with the traditional Black-Litterman model. The result show that our robust methodology can provide better risk adjusted performance compared to the orignial model and are less sensitive to incorrect inverstor views.
Databáze: Networked Digital Library of Theses & Dissertations