[en] APPLICATION OF FAST MULTIPOLE TECHNIQUES IN THE BOUNDARY ELEMENT METHODS
Autor: | LARISSA SIMOES NOVELINO |
---|---|
Jazyk: | portugalština |
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | TEXTO |
DOI: | 10.17771/PUCRio.acad.37003 |
Popis: | [pt] Este trabalho visa à implementação de um programa de elementos de contorno para problemas com milhões de graus de liberdade. Isto é obtido com a implementação do Método Fast Multipole (FMM), que pode reduzir o número de operações, para a solução de um problema com N graus de liberdade, de O(N(2)) para O(NlogN) ou O(N). O uso de memória também é reduzido, por não haver o armazenamento de matrizes de grandes dimensões como no caso de outros métodos numéricos. A implementação proposta é baseada em um desenvolvimento consistente do convencional, Método de colocação dos elementos de contorno (BEM) – com conceitos provenientes do Hibrido BEM – para problemas de potencial e elasticidade de larga escala em 2D e 3D. A formulação é especialmente vantajosa para problemas de topologia complicada ou que requerem soluções fundamentais complicadas. A implementação apresentada, usa um esquema para expansões de soluções fundamentais genéricas em torno de níveis hierárquicos de polos campo e fonte, tornando o FMM diretamente aplicável para diferentes soluções fundamentais. A árvore hierárquica dos polos é construída a partir de um conceito topológico de superelementos dentro de superelementos. A formulação é inicialmente acessada e validada em termos de um problema de potencial 2D. Como resolvedores iterativos não são necessários neste estágio inicial de simulação numérica, podese acessar a eficiência relativa à implementação do FMM. [en] This work aims to present an implementation of a boundary element solver for problems with millions of degrees of freedom. This is achieved through a Fast Multipole Method (FMM) implementation, which can lower the number of operations for solving a problem, with N degrees of freedom, from O(N(2)) to O(NlogN) or O(N). The memory usage is also very small, as there is no need to store large matrixes such as required by other numerical methods. The proposed implementations are based on a consistent development of the conventional, collocation boundary element method (BEM) - with concepts taken from the variationally-based hybrid BEM - for large-scale 2D and 3D problems of potential and elasticity. The formulation is especially advantageous for problems of complicated topology or requiring complicated fundamental solutions. The FMM implementation presented in this work uses a scheme for expansions of a generic fundamental solution about hierarchical levels of source and field poles. This makes the FMM directly applicable to different kinds of fundamental solutions. The hierarchical tree of poles is built upon a topological concept of superelements inside superelements. The formulation is initially assessed and validated in terms of a simple 2D potential problem. Since iterative solvers are not required in this first step of numerical simulations, an isolated efficiency assessment of the implemented fast multipole technique is possible. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |