[en] QUANTITATIVE SEISMIC INTERPRETATION USING GENETIC PROGRAMMING

Autor: ERIC DA SILVA PRAXEDES
Jazyk: portugalština
Rok vydání: 2015
Předmět:
Druh dokumentu: TEXTO
DOI: 10.17771/PUCRio.acad.24789
Popis: [pt] Uma das tarefas mais importantes na indústria de exploração e produção de petróleo é a discriminação litológica. Uma das principais fontes de informação para subsidiar a discriminação e caracterização litológica é a perfilagem que é corrida no poço. Porém, na grande maioria dos trabalhos os perfis utilizados na discriminação litológica são apenas aqueles disponíveis no domínio dos poços. Para que modelos de discriminação litológica possam ser extrapolados para além do domínio dos poços, faz-se necessário a utilização de características que estejam presentes tanto nos poços como fora deles. As características mais utilizadas para realizar esta integração rocha-perfil-sísmica são os atributos elásticos. Dentre os atributos elásticos o que mais se destaca é a impedância. O objetivo desta dissertação foi a utilização da programação genética como modelo classificador de atributos elásticos para a discriminação litológica. A proposta se justifica pela característica da programação genética de seleção e construção automática dos atributos ou características utilizadas. Além disso, a programação genética permite a interpretação do classificador, uma vez que é possível customizar o formalismo de representação. Esta classificação foi empregada como parte integrante do fluxo de trabalho estatístico e de física de rochas, metodologia híbrida que integra os conceitos da física de rochas com técnicas de classificação. Os resultados alcançados demonstram que a programação genética atingiu taxas de acertos comparáveis e em alguns casos superiores a outros métodos tradicionais de classificação. Estes resultados foram melhorados com a utilização da técnica de substituição de fluídos de Gassmann da física de rochas.
[en] One of the most important tasks in the oil exploration and production industry is the lithological discrimination. A major source of information to support discrimination and lithological characterization is the logging raced into the well. However, in most studies the logs used in the lithological discrimination are only those available in the wells. For extrapolating the lithology discrimination models beyond the wells, it is necessary to use features that are present both inside and outside wells. One of the features used to conduct this rock-log-seismic integration are the elastic attributes. The impedance is the elastic attribute that most stands out. The objective of this work was the utilization of genetic programming as a classifier model of elastic attributes for lithological discrimination. The proposal is justified by the characteristic of genetic programming for automatic selection and construction of features. Furthermore, genetic programming allows the interpretation of the classifier once it is possible to customize the representation formalism. This classification was used as part of the statistical rock physics workflow, a hybrid methodology that integrates rock physics concepts with classification techniques. The results achieved demonstrate that genetic programming reached comparable hit rate and in some cases superior to other traditional methods of classification. These results have been improved with the use of Gassmann fluid substitution technique from rock physics.
Databáze: Networked Digital Library of Theses & Dissertations