Superrozlišení obličeje ze sekvence snímků
Autor: | Mezina, Anzhelika |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
residual learning
face recognition neuronová síť U-Net model neural networks convolution network identifikace zpracování obrazu face superresolution konvoluční neuronová síť single superresolution identification detekce obličeje superrozlišení obličeje reziduální učení multiframe superresolution image processing sekvence snimků multiframe superrozlišení |
Druh dokumentu: | masterThesis |
Popis: | Táto práce se zabývá použitím hlubokého učení neuronových sítí ke zvýšení rozlišení obrázků, které obsahují obličeje. Tato metoda najde uplatnění v různých oblastech, zejména v bezpečnosti, například, při bezpečnostním incidentu, kdy policie potřebuje identifikovat podezřelého z nahraného videa ze sledovací kamery. Cílem této práce je navrhnout minimálně dvě architektury neuronových sítí, které budou pracovat se sekvencí snímků, a porovnat je s metodami zpracování jediného snímku. Pro tento účel je také vytvořena nová trénovací množina, obsahující sekvenci snímku obličeje. Metody zpracování jednoho snímku jsou natrénované na nové množině. Dále jsou navrženy nové metody zvětšení obrázků na základě sekvence snímků. Tyto metody jsou založené na U-Net modelu, který je úspěšný v segmentaci, ale také v superrozlišení. Pro zlepšení architektury byly použity reziduální bloky a jejich modifikace, a navíc také percepční ztrátová funkce, která dovoluje vyhnout se rozmazání a získání více detailů. První čast této práce je věnovana popisu neuronových sítí a některých architektur, jejichž modifikace mohou být použity v superrozlišení. Druhá část se poté zabývá popisem metod pro zvýšení rozlišení obrazu pomocí jednoho snímku, několika snímků a videa. Ve třetí části jsou popsány navržené metody a experimenty a v poslední části porovnaná metod založených na jednom snímku a několika snímcích. Navržené metody jsou schopny získat více detailů v obraze, ale mohou produkovat artefakty. Ty lze ale poté eliminovat pomocí filtru, například Gaussova. Nové metody méně selhávají při detekci obličejů, a to je podstatné u identifikace člověka v případě incidentu. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |