Sekvenční metody Monte Carlo

Autor: Coufal, David
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Druh dokumentu: masterThesis
Popis: Title: Sequential Monte Carlo Methods Author: David Coufal Department: Department of Probability and Mathematical Statistics Supervisor: prof. RNDr. Viktor Beneš, DrSc. Abstract: The thesis summarizes theoretical foundations of sequential Monte Carlo methods with a focus on the application in the area of particle filters; and basic results from the theory of nonparametric kernel density estimation. The summary creates the basis for investigation of application of kernel meth- ods for approximation of densities of distributions generated by particle filters. The main results of the work are the proof of convergence of kernel estimates to related theoretical densities and the specification of the development of approx- imation error with respect to time evolution of a filter. The work is completed by an experimental part demonstrating the work of presented algorithms by simulations in the MATLABR⃝ computational environment. Keywords: sequential Monte Carlo methods, particle filters, nonparametric kernel estimates
Databáze: Networked Digital Library of Theses & Dissertations