Popis: |
On solid surfaces wild strains of Saccharomyces cerevisiae form biofilm-like, structured colonies enabling them to survive long-term in hostile environments in the wild. However, the molecular mechanisms underlying the spatio-temporal development of colonies and their resistance to hostile conditions are still largely unknown. In this study, we analyzed the effect of the HAC1 gene on the colony morphology of wild strains of S. cerevisiae. The transcription factor Hac1p activates the unfolded protein response (UPR), which leads to activation of the expression of genes encoding components of the protein secretory pathway, and genes involved in stress responses in the endoplasmic reticulum (ER). The impact of HAC1 deletion is significant even under non-stress conditions and causes a radical reduction of structured colony architecture in hac1∆ strains derived from two wild S. cerevisiae strains (PORT and BR-F-Flo11p-GFP) and one laboratory ΣSh strain forming semi-fluffy or fluffy colonies. The hac1∆ strains exhibit a decreased vegetative growth rate, reduced cell attachment to the agar and an ineffective cell-cell adhesion resulting in decreased flocculation. The hac1∆ strains derived from BR-F-Flo11p-GFP contain a low level of Flo11p surface adhesin which is considered very important for the proper... |