Popis: |
Master´s thesis is focused on cluster analysis. Clustering has its roots in many areas, including data mining, statistics, biology and machine learning. The aim of this thesis is to elaborate a recherche of cluster analysis methods, methods for determining number of clusters and a short survey of feature selection methods for unsupervised learning. The very important part of this thesis is software realization for comparing different cluster analysis methods focused on finding optimal number of clusters and sorting data points into correct classes. The program also consists of feature selection HFS method implementation. Experimental methods validation was processed in Matlab environment. The end of master´s thesis compares success of clustering methods using data with known output classes and assesses contribution of feature selection HFS method for unsupervised learning for quality of cluster analysis. |