Exploring advanced forecasting methods with applications in aviation

Autor: Riba, Evans Mogolo
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Druh dokumentu: Dissertation
Popis: in English, Afrikaans and Northern Sotho
More time series forecasting methods were researched and made available in recent years. This is mainly due to the emergence of machine learning methods which also found applicability in time series forecasting. The emergence of a variety of methods and their variants presents a challenge when choosing appropriate forecasting methods. This study explored the performance of four advanced forecasting methods: autoregressive integrated moving averages (ARIMA); artificial neural networks (ANN); support vector machines (SVM) and regression models with ARIMA errors. To improve their performance, bagging was also applied. The performance of the different methods was illustrated using South African air passenger data collected for planning purposes by the Airports Company South Africa (ACSA). The dissertation discussed the different forecasting methods at length. Characteristics such as strengths and weaknesses and the applicability of the methods were explored. Some of the most popular forecast accuracy measures were discussed in order to understand how they could be used in the performance evaluation of the methods. It was found that the regression model with ARIMA errors outperformed all the other methods, followed by the ARIMA model. These findings are in line with the general findings in the literature. The ANN method is prone to overfitting and this was evident from the results of the training and the test data sets. The bagged models showed mixed results with marginal improvement on some of the methods for some performance measures. It could be concluded that the traditional statistical forecasting methods (ARIMA and the regression model with ARIMA errors) performed better than the machine learning methods (ANN and SVM) on this data set, based on the measures of accuracy used. This calls for more research regarding the applicability of the machine learning methods to time series forecasting which will assist in understanding and improving their performance against the traditional statistical methods
Die afgelope tyd is verskeie tydreeksvooruitskattingsmetodes ondersoek as gevolg van die ontwikkeling van masjienleermetodes met toepassings in die vooruitskatting van tydreekse. Die nuwe metodes en hulle variante laat ʼn groot keuse tussen vooruitskattingsmetodes. Hierdie studie ondersoek die werkverrigting van vier gevorderde vooruitskattingsmetodes: outoregressiewe, geïntegreerde bewegende gemiddeldes (ARIMA), kunsmatige neurale netwerke (ANN), steunvektormasjiene (SVM) en regressiemodelle met ARIMA-foute. Skoenlussaamvoeging is gebruik om die prestasie van die metodes te verbeter. Die prestasie van die vier metodes is vergelyk deur hulle toe te pas op Suid-Afrikaanse lugpassasiersdata wat deur die Suid-Afrikaanse Lughawensmaatskappy (ACSA) vir beplanning ingesamel is. Hierdie verhandeling beskryf die verskillende vooruitskattingsmetodes omvattend. Sowel die positiewe as die negatiewe eienskappe en die toepasbaarheid van die metodes is uitgelig. Bekende prestasiemaatstawwe is ondersoek om die prestasie van die metodes te evalueer. Die regressiemodel met ARIMA-foute en die ARIMA-model het die beste van die vier metodes gevaar. Hierdie bevinding strook met dié in die literatuur. Dat die ANN-metode na oormatige passing neig, is deur die resultate van die opleidings- en toetsdatastelle bevestig. Die skoenlussamevoegingsmodelle het gemengde resultate opgelewer en in sommige prestasiemaatstawwe vir party metodes marginaal verbeter. Op grond van die waardes van die prestasiemaatstawwe wat in hierdie studie gebruik is, kan die gevolgtrekking gemaak word dat die tradisionele statistiese vooruitskattingsmetodes (ARIMA en regressie met ARIMA-foute) op die gekose datastel beter as die masjienleermetodes (ANN en SVM) presteer het. Dit dui op die behoefte aan verdere navorsing oor die toepaslikheid van tydreeksvooruitskatting met masjienleermetodes om hul prestasie vergeleke met dié van die tradisionele metodes te verbeter.
Go nyakišišitšwe ka ga mekgwa ye mentši ya go akanya ka ga molokoloko wa dinako le go dirwa gore e hwetšagale mo mengwageng ye e sa tšwago go feta. Se k e k a le b a k a la g o t šwelela ga mekgwa ya go ithuta ya go diriša metšhene yeo le yona e ilego ya dirišwa ka kakanyong ya molokolokong wa dinako. Go t šwelela ga mehutahuta ya mekgwa le go fapafapana ga yona go tšweletša tlhohlo ge go kgethwa mekgwa ya maleba ya go akanya. Dinyakišišo tše di lekodišišitše go šoma ga mekgwa ye mene ya go akanya yeo e gatetšego pele e lego: ditekanyotshepelo tšeo di kopantšwego tša poelomorago ya maitirišo (ARIMA); dinetweke tša maitirelo tša nyurale (ANN); metšhene ya bekthara ya thekgo (SVM); le mekgwa ya poelomorago yeo e nago le diphošo tša ARIMA. Go kaonafatša go šoma ga yona, nepagalo ya go ithuta ka metšhene le yona e dirišitšwe. Go šoma ga mekgwa ye e fepafapanego go laeditšwe ka go šomiša tshedimošo ya banamedi ba difofane ba Afrika Borwa yeo e kgobokeditšwego mabakeng a dipeakanyo ke Khamphani ya Maemafofane ya Afrika Borwa (ACSA). Sengwalwanyaki šišo se ahlaahlile mekgwa ya kakanyo ye e fapafapanego ka bophara. Dipharologanyi tša go swana le maatla le bofokodi le go dirišega ga mekgwa di ile tša šomišwa. Magato a mangwe ao a tumilego kudu a kakanyo ye e nepagetšego a ile a ahlaahlwa ka nepo ya go kwešiša ka fao a ka šomišwago ka gona ka tshekatshekong ya go šoma ga mekgwa ye. Go hweditšwe gore mokgwa wa poelomorago wa go ba le diphošo tša ARIMA o phadile mekgwa ye mengwe ka moka, gwa latela mokgwa wa ARIMA. Dikutollo tše di sepelelana le dikutollo ka kakaretšo ka dingwaleng. Mo k gwa wa ANN o ka fela o fetišiša gomme se se bonagetše go dipoelo tša tlhahlo le dihlo pha t ša teko ya tshedimošo. Mekgwa ya nepagalo ya go ithuta ka metšhene e bontšhitše dipoelo tšeo di hlakantšwego tšeo di nago le kaonafalo ye kgolo go ye mengwe mekgwa ya go ela go phethagatšwa ga mešomo. Go ka phethwa ka gore mekgwa ya setlwaedi ya go akanya dipalopalo (ARIMA le mokgwa wa poelomorago wa go ba le diphošo tša ARIMA) e šomile bokaone go phala mekgwa ya go ithuta ka metšhene (ANN le SVM) ka mo go sehlopha se sa tshedimošo, go eya ka magato a nepagalo ya magato ao a šomišitšwego. Se se nyaka gore go dirwe dinyakišišo tše dingwe mabapi le go dirišega ga mekgwa ya go ithuta ka metšhene mabapi le go akanya molokoloko wa dinako, e lego seo se tlago thuša go kwešiša le go kaonafatša go šoma ga yona kgahlanong le mekgwa ya setlwaedi ya dipalopalo.
Decision Sciences
M. Sc. (Operations Research)
Databáze: Networked Digital Library of Theses & Dissertations