Exploring misconceptions of Grade 9 learners in the concept of fractions in a Soweto (township) school

Autor: Moyo, Methuseli
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Druh dokumentu: Dissertation
Popis: The study aimed to explore misconceptions that Grade 9 learners at a school in Soweto had concerning the topic of fractions. The study was based on the ideas of constructivism in a bid to understand how learners build on existing knowledge as they venture deeper into the development of advanced constructions in the concept of fractions. A case study approach (qualitative) was employed to explore how Grade 9 learners describe the concept of fractions. The approach offered a platform to investigate how Grade 9 learners solve problems involving fractions, thereby enabling the researcher to discover the misconceptions that learners have/display when dealing with fractions. The research allowed the researcher to explore the root causes of the misconceptions held by learners concerning the concept of fractions. Forty Grade 9 participants from a township school were subjected to a written test from which eight were purposefully selected for an interview. The selection was based on learners’ responses to the written test. The researcher was looking for a learner script that showed application of similar but incorrect procedures under specific sections of operations of fractions, for example, multiplication of fractions. Both performance extremes were also considered, the good and the worst performers overall. The written test and the interviews were the primary sources of data in this study. The study revealed that learners have misconceptions about fractions. The learners’ definitions of what a fraction is were neither complete nor precise. For example, the equality of parts was not emphasised in their definitions. The gaps brought about by the learner conception of fractions were evident in the way problems on fractions were manipulated. The learners did not treat a fraction as signifying a specific point on the number system. Due to this, learners could not place fractions correctly on the number line. Components of the fraction were separated and manipulated as stand-alone whole numbers. Consequently, whole number knowledge was applied to work with fractions. A lack of conceptual understanding of equivalent fractions was evident as the common denominator principle was not applied. In the multiplication of fractions, procedural manipulations were evident. In mixed number operations, whole numbers were multiplied separately from the fractional parts of the mixed number. Fractional parts were also multiplied separately, and the two answers combined to yield the final solution. In the division of fractions, the learners displayed a lack of conceptual knowledge of division of fractions. Operations were made across the division sign numerators separate from the denominators. This reveals that a fraction was not taken as an outright number on its own by learners but viewed as one number put on top of the other which can be separated. Dividing across, learners rendered division commutative. A procedural attempt to apply the invert and multiply procedure was also evident in this study. Learners made procedural errors as they showed a lack of conceptual understanding of the keep-change-flip division algorithm. The study revealed that misconceptions in the concept of fraction were due to prior knowledge, over-generalisation and presentation of fractions during instruction. Constructivism values prior knowledge as the basis for the development of new knowledge. In this study, learners revealed that informal knowledge they possess may impact negatively on the development of the concept of fractions. For example, division by one-half was interpreted as dividing in half by learners. The prior elaboration on the part of a whole sub-construct also proved a barrier to finding solutions to problems that sought knowledge of fractions as other sub-constructs, namely, quotient, measure, ratio and fraction as an operator. Over generalisation by learners in this study led to misconceptions in which a procedure valid in a particular concept is used in another concept where it does not apply. Knowledge on whole numbers was used in manipulating fractions. For example, for whole numbers generally, multiplication makes bigger and division makes smaller. The presentation of fractions during instruction played a role in some misconceptions revealed by this study. Bias towards the part of a whole sub-construct might have limited conceptualisation in other sub-constructs. Preference for the procedural approach above the conceptual one by educators may limit the proper development of the fraction concept as it promotes the use of algorithms without understanding. The researcher recommends the use of manipulatives to promote the understanding of the fraction concept before inductively guiding learners to come up with the algorithm. Imposing the algorithm promotes the procedural approach, thereby depriving learners of an opportunity for conceptual understanding. Not all correct answers result from the correct line of thinking. Educators, therefore, should have a closer look at learners’ work, including those with correct solutions, as there may be concealed misconceptions. Educators should not take for granted what was covered before learners conceptualised fractions as it might be a source of misconceptions. It is therefore recommended to check prior knowledge before proceeding with new instruction.
Mathematics Education
M. Ed. (Mathematics Education)
Databáze: Networked Digital Library of Theses & Dissertations