Enhancing phosphorus availability in some phosphate fixing soils of the Transkei region, South Africa using goat manure

Autor: Gichangi, Elias Maina
Jazyk: angličtina
Rok vydání: 2007
Předmět:
Druh dokumentu: Diplomová práce
Popis: Low availability of soil phosphorus (P) caused by strong sorption of P is a major constraint to agricultural production in most South African soils, particularly those from the high rainfall areas. The aim of this study was therefore to investigate whether combined addition of goat manure with inorganic P fertilizers could enhance P availability in some P fixing soils of the Transkei region, South Africa. The study addressed the following specific objectives (i) to assess P sorption capacities and requirements of selected soils and their relationship with selected soil properties and single point sorption test, (ii) to assess the effects of goat manure and lime addition on P sorption properties of selected P fixing soils (iii) to assess the temporal changes in concentration of inorganic and microbial biomass P fractions following application of inorganic fertilizer P with goat manure in a laboratory incubation experiment, and, (iv) to assess the effects of goat manure application with inorganic phosphate on inorganic and microbial biomass P fractions, P uptake and dry matter yield of maize. Sorption maxima (Smax) of seven soils examined ranged from 192.3 to 909.1 (mg P kg-1) and were highly and positively correlated with sorption affinity constant (r = 0.93, p = 0.01) and organic C (r = 0.71, p = 0.01). The amount of P required for maintaining a soil solution concentration of 0.2 mg P l-1 ranged from 2.1 to 123.5 mg P kg-1 soil. Soils collected from Qweqwe (a Cambisol), Qunu (an Acrisol), Ncihane (a Luvisol) and Bethania (a Ferralsol) had lower external P requirement values and were classified as lower sorbers, whereas soils from Ntlonyana (a Planosol), Chevy Chase (a Ferralsol) and Flagstaff (a Ferralsol) were classified as moderate sorbers. The results suggested that P availability could be compromised in 43 percent iii of the soils studied and that measures to mitigate the adverse effects of P sorption were needed to ensure that P is not a limiting factor to crop production, where such soils are found. Goat manure addition at varying rates (5, 10 and 20 tha-1 dry weight basis) to two of the moderately P fixing soils from Chevy Chase and Flagstaff, reduced P sorption maxima (Smax) compared to the control treatment. Phosphate sorption decreased with increasing amounts of goat manure in both soils but the extent of reduction was greater on Chevy Chase soil than on Flagstaff soil. The relative liming effects of the different rates of goat manure followed the order 20 t GM ha-1 > 10 t GM ha-1 > 5 t GM ha-1. In a separate experiment, addition of inorganic P at varying rates (0, 90, 180, and 360 kg P ha-1) to Flagstaff soil increased labile P fractions (resin P, biomass P and NaHCO3-Pi) and the increases were greater when goat manure was co-applied. The control treatments contained only 17.2 and 27.5 mg P kg-1 of resin extractable P in the un-amended and manure amended treatments, respectively which increased to 118.2 and 122.7 mg P kg-1 on day 28 of incubation. Biomass P concentration was increased from 16.8 to 43.9 mg P kg-1 in P alone treatments but the fraction was greatly enhanced with manure addition, increasing it from 32.6 to 97.7 mg P kg-1. NaOH-Pi was the largest extractable Pi fraction and ranged from 144.3 to 250.6 mg P kg-1 and 107.5 to 213.2 mg P kg-1 in the unamended and manure amended treatments, respectively. Dry matter yield and P uptake by maize grown in the glasshouse were highly and significantly (p = 0.05) correlated with the different P fractions in the soil. The correlations followed the order resin P (r = 0.85) > NaOH-Pi (r = 0.85) > NaHCO3-Pi (r = 0.84) >> biomass P (r = 0.56) for dry matter yield at 6 weeks after planting. At 12 weeks after planting, goat manure had iv highly significant effects on resin P and biomass P but had no effect on NaHCO3-Pi and NaOH–Pi. The combination of biomass P, resin P and NaHCO3-Pi explained 75.8 percent of the variation in dry matter yield of which 63.0 percent of the variation was explained by biomass P alone. The greatest increase in biomass P occurred when added P was co-applied with 5 or 10 tha-1 goat manure. The predictive equation for maize dry matter yield (DM) was: DM (g) = 1.897 biomass P + 0.645 resin P (r = 0.73). Resin P was the fraction that was most depleted due to plant uptake and decreased by 56 to 68 percent between the 6th week and the 12th week of sampling indicating that it played a greater role in supplying plant available P. The results therefore suggested that the use of goat manure may allow resource poor farmers to use lower levels of commercial phosphate fertilizers because of its effect to reduce soil P sorption. In addition, higher increases in biomass P due to manure addition observed at lower rates of added P indicated that goat manure has potential for enhancing bioavailability and fertilizer use efficiency of small inorganic P applications.
Databáze: Networked Digital Library of Theses & Dissertations