Popis: |
The Tahorakuri Formation was introduced as a stratigraphic term to simplify the sometimes complex and inconsistent naming conventions in subsurface deposits within the geothermal fields of the central Taupo Volcanic Zone (TVZ). It consists of all volcaniclastic and sedimentary deposits between the ~350 ka Whakamaru-group ignimbrites and the greywacke basement that cannot be correlated with known ignimbrites. As such, it represents a long period in which relatively little is known about the volcano-tectonic history of the TVZ. The thesis focuses on the Tahorakuri Formation at Ngatamariki and Rotokawa geothermal fields and the implications for the volcano-tectonic evolution of the TVZ. Drill cuttings from wells NM5 and NM6 are re-examined, and new U-Pb zircon dates from the Tahorakuri Formation are presented and implications discussed. Potassium feldspars identified in the drill cuttings from NM5 were examined by Raman spectroscopy and electron microprobe (EMP) analysis. Although petrographically many of the feldspars appear similar to sanidine, a primary volcanic mineral phase, this showed them to be adularia which formed during hydrothermal alteration. Raman spectroscopy was found to be ideal for analysing a large number of grains quickly, with the spectral peak at ~140 cm⁻¹ being particularly useful for identifying adularia as it is absent in sanidine. EMP analysis was found to be somewhat slower, but definitively identified the feldspars as adularia, with typical potassium-rich compositions of Or₉₄-Or₉₉. U-Pb dating shows that the Tahorakuri Formation formed over a very long time, with pyroclastic deposits ranging from 1.89 - 0.70 Ma. This was followed by a period with little or no explosive volcanism until ~0.35 Ma during which sediments were deposited at Ngatamariki. The periods at ~1.9 Ma and ~0.9 Ma were particularly active phases of pyroclastic deposition, with the second phase likely correlating with the Akatarewa ignimbrite. The oldest deposits overlie a large andesitic composite cone volcano. Significant subsidence of the andesite must have preceded emplacement of the silicic deposits, indicating that rifting within the central TVZ may have started earlier than previously thought. While the origin of the deposits is uncertain, the distribution of the oldest deposits outcropping at the surface, as well as the likely early initiation of rifting, would suggest a source within the TVZ is likely. |