Investigations into senescence and oxidative metabolism in gentian and petunia flowers

Autor: Zhang, Shugai
Jazyk: angličtina
Rok vydání: 2008
Předmět:
Druh dokumentu: Text
Popis: Using gentian and petunia as the experimental systems, potential alternative post-harvest treatments for cut flowers were explored in this project. Pulsing with GA₃ (1 to 100 µM) or sucrose (3%, w/v) solutions delayed the rate of senescence of flowers on cut gentian stems. The retardation of flower senescence by GA₃ in both single flower and half petal systems was accompanied by a delay in petal discoloration. The delay in ion leakage increase or fresh weight loss was observed following treatment with 5 or 10 µM GA₃ of the flowers at the unopen bud stage. Ultrastructural analysis showed that in the cells of the lower part of a petal around the vein region, appearance of senescence-associated features such as degradation of cell membranes, cytoplasm and organelles was faster in water control than in GA₃ treatment. In particular, degeneration of chloroplasts including thylakoids and chloroplast envelope was retarded in response to GA₃ treatment. In the cells of the top part of a petal, more carotenoids-containing chromoplasts were found after GA₃ application than in water control. In petunia, treatment with 6% of ethanol or 0.3 mM of STS during the flower opening stage was effective to delay senescence of detached flowers. The longevity of isolated petunia petals treated with 6% ethanol was nearly twice as long as when they were held in water. Senescence-associated petal membrane damage, weight decline, ovary growth and decrease in protein and total RNA levels were counteracted in ethanol-treated petals. The accumulation of ROS, particularly superoxide and hydrogen peroxide, was also inhibited or delayed by ethanol application. Anti-senescence mechanisms, particularly the changes of oxidative / antioxidant metabolism involved in petal senescence, were investigated. In gentian, activities of AP and SOD but not POD in the GA₃-treated petals were significantly higher than those of the control. In isolated petunia petals, the decreased trends of antioxidative SOD and AP activities during senescence were apparently prevented in response to ethanol treatment although the levels of ascorbate and photo-protective carotenoids were not affected. Furthermore, by optimizing a range of critical PCR parameters such as primer combinations, cDNA concentrations and annealing temperatures, a reliable protocol has been established for quantifying the expression level of Cu-Zn SOD gene in petunia petals using SYBR Green I based real-time RT-PCR. A 228 bp gene fragment of Cu-Zn SOD was isolated from petunia (var. 'hurrah') using RT-PCR. It was found that the mRNA level (relative to 18S rRNA level) of Cu-Zn SOD decreased significantly after 6 days in water. However, there was about a 55-fold increase in Cu-Zn mRNA level after 6 days of ethanol treatment when compared to water-treated petals. Similarly, down-regulation of the mRNA level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was also observed during senescence of petunia petals. Increased vase life of petunia petals by ethanol treatment was correlated with promotion of GAPDH expression by a factor of about 16 on day 6. Taking together, the anti-senescence effects of GA₃ and ethanol are at least partially associated with an increased efficiency of petal system utilizing ROS since the selected antioxidants were significantly maintained when compared to the corresponding values for the control.
Databáze: Networked Digital Library of Theses & Dissertations